

Instructor: Felix Schwenninger $\label{eq:Department} \mbox{ Department of Applied Mathematics}$

Test Exam: Course Applied Functional Analysis

Exam time: 3h 2019-191506302-1A

Unless indicated all answers need an explanation/proof.

You may use a calculator (non-symbolic).

Notation like " $\ell^p(\mathbb{N};\mathbb{C})$ " or " $L^p(0,1;\mathbb{C})$ " refers to $\underline{\mathbb{C}}$ -valued sequences which are p-summable or $\underline{\mathbb{C}\text{-}valued}$ 'functions' which are p-integrable respectively.

NAME STUDENT:	STUDENT ID:
1. (10 points). Let X be a normed space. Define the (a) X is a Banach space;	ne following notions:
(b) the Sobolev space $H^1(0,1)$	
2. (15 points). Give an example (no proof required)) of
(a) two norms on the space $\{f:[0,1]\to\mathbb{R}\colon f$ co	ontinuous} which are not equivalent;
(b) a reflexive space	
(c) an unbounded linear operator $T: X \to \mathbb{R}$ fo	r some normed space X over the field \mathbb{R} .
3. (15 points) Formulate (a) a version (or a corollary) of the Hahn–Bana	ch theorem (without proof, 5p);
(b) the spectral theorem for compact self-adjoint	t operators and sketch the proof $(5p+5p)$

4. (15 points) Consider the operator

$$A = \frac{1}{2}(J^2 + J^{*2})$$

on $L^2(a,b)$, where (as usual) $Jf(t)=\int_0^t f(x)\mathrm{d}x$ for $f\in L^2(a,b),\,t\in(a,b)$. Show that

- (a) A is a Hilbert-Schmidt operator and determine the integral kernel.
- (b) ran $A \subset H^2(a, b)$ and (Af)'' = f for all $f \in L^2(a, b)$.
- (c) Characterize the elements in ran A by finding the right boundary conditions.
- 5. (10 points) Consider the linear operator

$$S: L^1(0,1) \to L^1(0,1), (S(f))(x) = (1 + e^x)f(x)$$

- (a) Show that S is bounded and determine the operator norm ||S||.
- (b) Is S compact? Prove or disprove.
- 6. (10 points) Let $H = \ell^2(\mathbb{N})$ with canonical unit vectors $(e_n)_{n \in \mathbb{N}}$ and consider the closed linear subspaces

$$F = \overline{\operatorname{span}}\{e_{2n-1} : n \in \mathbb{N}\}, \qquad G = \overline{\operatorname{span}}\{e_{2n-1} + \frac{1}{n}e_{2n} : n \in \mathbb{N}\}.$$

Show that

- (a) $F + G := \{ f + g \in H : f \in F, g \in G \}$ is dense in H and $F \cap G = \{ 0 \}$.
- (b) F + G is not closed.
- 7. (15 points)
 - (a) Find $f \in L^2(0,1) = L^2(0,1;\mathbb{R})$ such that $\int_0^1 f(s) ds = 1$ and such that the term

$$\int_0^1 |f(s)|^2 \mathrm{d}s$$

is as small as possible and determine this value. Is this choice of f unique?

(b) Find $f \in L^1(0,1) = L^1(0,1;\mathbb{R})$ such that $\int_0^1 f(s) \mathrm{d} s = 1$ and such that the term

$$\int_0^1 |f(s)| \mathrm{d}s$$

is as small as possible and determine this value. Is this choice of f unique?

(c) What can be said about the infimum of

$$\int_0^1 |f(s)| \mathrm{d}s$$

over all $f \in L^1(0,1)$ such that $\int_0^1 s f(s) ds = 1$? Is it a minimum?