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Afa Definitions

Space structure Complete name
(Q,<.,.>) inner pr | Hilbert

(&, 1]-1]) Normed Banach
(Q,d(.,.)) metric Complete

Structural properties and THms
Inner product:

Definition 1.2. Let E be a vector space. A mapping

ExE—K, (fig)—(f.9
is called an inner product or a scalar product if it is sesquilinear:
(Nf + g, 1) = A (f.h) + (g, B

(hAf+pg)=X(h,fy+E(h,g)  (fig,heE, A puek),

symmetrie:
(frg)=1.f) (fgcE)
positive:
(f.frz0 (feE)
and definite:
(f.fi=0 = f=0 (f€E)
Norm:

Definition 2.5. Let E be a vector space over the field K € {R,C}.
mapping

[ - B — Ry
is called a norm on F if it has the following properties:
1) [Iff=0+ f=0 forall fe E
2) [IAfIl = ALIf] forall fe B, AcK
3) If+all <IFI+ llgll forall f,geE

(definiteness)
(homogeneity)

(triangle inequality

Operator definitions, for T
Bounded 3¢ = 0 s.t. ||Tf|| < C||f||Vf EE.

Operator norm ||T|| = sup| < 1Tl
Finite rank(T) := dim(range(T)) < o

Finitely approximable if 3(T,,) € L(E; F) all
of finite rank such that ||Tn — T|| - 0.

Compact operator (f,,) bounded in E —
(Tf,) € F has a convergent subsequence.
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Many quick/specific definitions are dropped in this page. For
definition of certain spaces continue below.

Definitions
CENTRAL: Complete: every Cauchy sequences
converges to an element in the space.

(fn) is Cauchy if Ve > 0,IN € Ns.t. n,m >
N = |lfp = finl| <e

Opensetif 0: Vx € 0 3e > 0: B(x,€) € 0.

ClosedsetA= ASQ
ifx, €A s.t. x, > x €EQ>x, >x €A

Closure A:={x € Q|3x, €A s.t. x, > x}

Compact (Q, d) is when every sequence in
the set has a convergent subsequence.

Compact support: when a function f vanishes
outside a finite interval (a,b).

Convex: f,g € A, t € [0,1]
-stf+(1-t)ged

A is Lebesque Measure is 1" (A) = inf Z|Q,|
with Q,, a sequence of intervals that cover A.
If the Lebesque measure is finite, the set is
Lebesque measurable.

f € Ais Lebesque measurable if
{tedla<f(t)<b}eEXVabeR

Isometry: ||Tf||F = ||f||E Vv f.
Always 1-1, if also onto, then isometric
isomorphism.

A normed space is seperable if 34 C E
countable s.t. span(A) = E.

e.g. [2(N)is seperable with A = {e,}.
[® is not.
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Spaces of note

For below: I made this to be read left to right, to highlight symmetries. Does not mean everything placed next to each other has symmetry, but you will see the places where it

obviously does have symmetry.

Norms: D, = discrete p-norm (Z]x,|P)/?, C, = integral p-norm, ([ |f|pds)1/p op=||T|| = “}ﬂf [IT£
<1
Space Norm Space Norm
c:={(xp) €K|x,>x€K} Y C(E;F) ={A € L(E;F) | Ais a compact operator} oP
Dp—1p,0 Y
¢o = {(x) | x, — 0} Y Co(E; F) ={A € L(E;F) | Ais finitely approximable} oP
Coo := {(x) | x, = 0, eventually} Dy1pw N Coo(E; F) :={A € L(E;F) | A has finite rank} oP
N
N
B(Q) := all bounded functions on Q C, N
Note not necessarily continuous. However, this Cp N
kind of proves completeness for the ones below, Co Y
due to closedness of them.
C :=the set of continuous functions C; N
C! = the set of once cont. diff. functions. G, N
C, :={f € B(Q) | f is continuous} Co Y
Co :={f cont | f(a) = f(b) = 0}
Or continuous functions with compact support.
Cper = {f cont |f(0) = f(]-)}
Cl:=CyncC* C; N (For below: let X be any interval, and) - -
G, N 2 (€ P(R)): =the set of all Lebesque-measurable sets
Co N Is the set on which we restrict ourselves.
M(X) ={f:X > K | f is Lebesque — Measurable} - --
L= eM: [If1], <)
I = {(x,) | Zlx,| < 0} D, Y L, := L'/~A with equivalence relation for almost everywhere C, Y
L := {(xy) | Elxy[*)/? < o0} D, Y [ L:=" Gy Y
L = (G | (Elx )77 < o0} D, Y [ L,=" ¢, |
I = (Cxn) [suplee] < 0} Do V| Lo =" with [Ifl] o = inflc 2 0 | If| S ¢, ae.} Coo | ¥
St([a,bl; E) := {f:[a, b] - E | 3 partitioning (t,) of [a,b] Co N
sit. f(O) =x, 0n[tyq, 4]}
Reg([a,b]; E) == St([a,b]; E) in B([a,b]; E) w.rt|]. |l Co
L(E; F) :=the space of bounded linear functions OP, when F is Banach Y E' := L(E; K) the dual space to normed space E OP by left | Y
from Eto F. side
H' :={f € L? | Ja weak derivative '} ||f||H1 Y 1P == {f € LP, f has compact support} C, Y
2 ,12\1/2
<fgSm=<fg>p+<fhg > = (I1A11; + 111;)
Hi:=H'NC,
o 111l v
<f.g>p=<f.9">p2 OR
, Y
1], = 11,
HP :={f €H' | f' € HP L 2 _ 2oy
f f } ||f||HP_ Z||f(k)||2
<fig>uw=Zp_, <f®,g® >,
HZ =:dom(Ap) = dom(L) Same as above for p=2 Y
Note: closed subspace
of H?(a, b), therefore—>
Baire theorem consequences:
THM: A normed space with a countable algebraic basis is never complete. Note that countable implies infinite elements.
So in this context, R3 is complete, since it has a finite, nut a countable, basis.
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On scales, strong and weak norms

I €12 cI® Infactall of these are strict. (ex 3.4)

On finite dimensional (linear) spaces, all norms are equivalent (because they are all equivalent to the
euclidean 2-norm on K”d, and there is an isometric isomorphism from E to KAd).

L*(a,b) € LP(a,b) S L*(a, b). All of these are proper inclusions.
None of these hold if we replace intervals with R.

1 1
Furthermorefor%+%= 1, ||f||1 < (b—a)5||f||p and ||f||p < (b - a)°|Ifl|

The whole finite-approximation of operator — spaces:

Strong / weak norms

A useful tool to determine densities of spaces in each other wrt certain norms is the idea of a strong
vs weak norm, since a space being dense in another wrt a strong norm is also dense wrt a weaker
norm.

Def a norm is strong compared to weak when ||. [ls < c||. ||y for some c.
In the below, the constant is omitted.

If1l, < [IF1], < [iftl.,

||A[k] ||L < ||A[k] ”HS the Hilbert — Schmidt norm for integral operators (OP theory)
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Densities

Note that A is dense in Q if A = Q, with A the closure of A := {x € Q:3(x,) = x,x, € A}

Before we dive in, some useful density theorems:

Approximation theorems
TH. Dense in dense =dense:  A,B € (Q,d) with A € Bwith A= Q,then B = Q

TH. Dense = dense in a weaker norm:
TH. Strong vs weak norms: On (Q, ||.||s) we have ||f — fn||s -0, then [|f — fn||W - 0,too

Cor: Adensein Qwrt]||.||s = Adensein Qwrt ||.]|],,

TH. Image of dense is dense in the image: T: E — F linear, A € E dense, then T(A) dense in T(E)

Density table:

Space 1 Is dense in space 2 Wrt norm (strongest)
Coo lZ 2
Coo Co inf
Coo i P
Weierstrass Pla,b] Cla, b] sup
Cor c® C sup
Co C 2
Cola, b] Cla, b] p
Cla, b] LP(a, b) P
Ca Co Sup/inf
Cala,b] LP(a, b) p
PL][a, b] piecewise linear Cla, b] inf
LP(R) compact support LP(R) p (<inf)
C°(a,b) Cola, b] Inf
C:°(a,b) LP(a,b) p
C(R) LP(R) p
L2(R) LP(R) p
Weierstrass 2.0 span{e?™"s} Cper[0,1] inf
trigonometric polynomials
Cl[a,b] H(a,b) H-1
Cila,b] H(a,b) H-01

Note: the “wrt norm” column might be abundant, since, given a normed space (E, || ||g), if a space is
dense in this larger space, it will always be with respect to the norm ||. || ;. Only when spaces allow
for several normes, it is important, but usually it will be obvious.
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Operators

Note on spaces such as LP we naturally pair it with the p-norm.

Operator name

Space to space

Definition

Bounded/operator norm?

Projection

E->E inner product spaces

Strictly speaking mapsto F a
subspace of E

Pf :=Z <f.e>e¢
With (e;) € E an orthonormal
system

[IPFI] < 1If1]

Any operator

K¢>F
From the fields with standard
Euclidean norm to any normed
space on K¢

Yes, CH 2.

Any operator

F — E with E fin dim

Yes, isom-isom K*Ad->E + above

Shift operators,

OnlP - [P

(L)) =f(n+1),

(RfY(n) = f(n—1),
Where left deletes the first entry
and right adds a 0.

Both with norm 1.

Multiplication | Specifically 12 — [? Given (1,) € 1%, Op norm is ||4]c
operator (Arf) = Anf ()
Multiplication T,:C—>K Givenm € C Op norm is ||m||1
continuous Tuf = [ m(s)f(s)
T:C - (C,0) Af =mf ||m||oo
Integrator J:L*(a,b) - (C[a, b], =) b L
1© = [ teafdr
o a [at] ||]f||oo<||f||1
- [ reodx
a
Laplace L:LY(R,) - L (K) LO®) = [, e ¥ f(s)ds 1
Fouri F:LY(R) » L°(R * 1
ourier ( ) - ( ) .'Ff(t) — f e_ltsf(S)dS
Orthogonal Pe:H—>F *Pf:=3;<f.e>e¢ 1. Also:
projection H Hilbert, F a closed subspace When 3(€j) ONS in H ~, Parseval:
s.t. F:=span{e;} ||Pf||2=Z|<f,ej>|2
j
Derivative H(a,b) - L?(a, b) f-f Yes
Dirichlet- Ap:HZ(a,b) - L*(a,b), Apu=u" Yes
Laplacian As well as A5t

Erik Leering

Operator Theory
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Operator theory

Def Integral operator

For X,Y intervals on R.An operator A is an integral operator if 3function
k:X xY - K such that (Af)(¢) = (Apgf) (@) = J, k(t,s)f (s)ds.
Where we call k the kernel of the operator.

Furthermore we define the following cross operator:

F®Pxy) = f)g»)

Where, if f and g are measurable, so is their product. This induces a norm on L(X x Y) as you would
expect.

DefT:E — F is invertible if T is bijective and T~ tis bounded.

Def Hilbert-Schmidt kernel functions:
For X, Y and k as before, with k € L?(X x ), i.e., fX fylk(x, y)|2dydx < oo,
We call k a Hilbert-Schmidt kernel-function.

Theorem then the induced HS-integral operator Ay satisfies
||A[k]f||L2 < lkllz2x x vy 1 f ll2¢r)

And, since k is in essence bounded as a HS kernel, we have that the integral operator is bounded.

Moreover: k is uniquely determined by Ay (a.e.).
Def HS-norm: ”A[k]”HS = |kll2cx x vy

It basically takes the norm of the kernel to define the norm of the corresponding integral operator.

Approximations of operators

From the fact that F Banach — L(E; F)is Banach, it follows that ||ST|| < ||S|||IT]|.
This allows for def Strong convergence is when (T,,f) - Tf Vf € F,in||.||f.

Note that ||T,f — Tf|l < |IT, — TIllIf |l , hence convergence in the operator norm implies strong
convergence. So in fact, strong convergence is weaker than convergence in the operator norm.

Itis in fact strictly weaker: the projection does converge strongly, B, := Z;Lzl <.,ej > ej has

P,f — f foreach f € H. However, the operators never converge in the operator norm.
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Defnitions we call A: E — F:

Name Corresponding space | Definition

Finite rank Coo dimrange(A) < o

Finitely approximable Co 3(A,) all finite rank: ||A — A, || = 0

Compact C (fp) bnd in E - (Af;,) hasa
convergent subsequence.

Examples/theorems:

- HS integral operators are finitely approximable.

- E,F Banach and A:E - F is finitely approximable — A is compact.
-A€Cy— AC,DA € C, for C,D just linear operators.

-E,F Hilbert — Cy(E; F) = C(E; F).

Adjoints
On Hilbert spaces, A*:F = E adjoint to A: E - F bnd linear,

Issuchthat < Af,g >=< f,A*g >.

Construction of A*: let b : Hx K - Kbnd.ThenVf € H, g € K,we have that

|b(f,g)| < cllflllgll, for some c. Then 3! lin.bnd.B:K — H s.t. b(f,g) =< f,Bg >y Vf,g.

Even: ||B|| < c. Then we can just take b(f, g) = < Af, g >, and by using Riez-Fréchet:
A*=B,c=4l, A" =4, and|All = 4"].

Theorems:

- A compact -> A* compact.
- Afinite rank has A* finite rank.

Lemma: A lin bnd, then (ker(4))* = ran(4*).So H = ran(4*) @ ker (4).
This is especially nice for self-adjoint operators, which will be useful later.

Theorem: Max-Milgram
If we have:

- H Hilbert,V € H alinear subspace s.t. (V,<.,.>) is also complete,
- 3AC =0 s.t. ||lvllg < Cllvlly,
- Ja:VxV - Ksesquilinear s.t.
o aisbnd, |a(u,v)| < cllulllv||
o aiscoercive,38 > 0 s.t. |a(u,v)| = §||ullZ,
ThenVf e H,AlueV s.t. au,v) =< f,v >y, VvEV.

Even, A: H - V defined by Af :=u hasnorm ||A]| < C/§
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Approximate eigenvalues
Def for A € L(E), A € C is an approximate eigenvalue 1 if 3(f,) €E s.t.

”fn” =1, & ||)Lfn - Afn” - 0.
Here the sequence of functions can be understood as approximate eigenvectors.

Lemma: Let A be bnd on E Banach. If (ol — A) is invertible, then ¢ cannot be an A.
Even, if |a| > ||A|l, then ol — A is invertible (and, o is no approx eigvalue)

Theorem:
Let A € L(E) for E Banach. Thenif A! = 0 is an approx eigenvalue,
then it is an eigenvalue.

Furtermore, dimker(Al — A) < oo,

Self-Adjoint: A*=A. THEN:
-<Af,f >eR
-[1Al = Al == sup {I< Af, f >| s.t. lIfll=1}  THEN

- All eigenvalues of A are real.
- All eigenvectors are orthogonal.
- Fasubspace of H s.t. A(F)SF - A(F1)CcF! ieVfEF: Af€F
- A=A"compactonH, then3ld e Rs.t. ||A] = |4
Examples: orthogonal projections, multiplication op on [®, HS integral operators if k(x,y) = k(y, x)

Theorem: SPECTRAL THEOREM: For A = A* € L(H) compact.
Then 3(e,) with some indexing set J such that :

- (ep) isan ONS
- 3y all in R/{0} withA, - 0 (incaselJ=N), s.t.
- Vx€HAx =}1, <x,e, > e, Even:Ae; = Ae;

Uniform Boundedness

Def:a collection T of linear op's:E — F is uniformly bounded if 3¢ > 0:
ITFIl <clifll, Vf €ETET.

In other words, T is uniformly bounded if each T is bounded and sup{||T||} < co.
Once canview I € L(E; F) as a bounded subset.

Def:T is pointwise bnd if ||Tf|l < sup{lISI}||fIl-
seT

Theorem: E Banach, F normed — T is uniformly bounded if f it is pointwise bnd.

Theorem 15.6 (Banach Steinhaus?). Let E, F be Banach spaces, and let
(Th)ners C L(E; F) be a sequence such that

Tf:= lim T,f

n—0C

exists for every f € E. Then 1 is a bounded operator, (1},)nen is uniformly
bounded, and
|7|| < liminf ||T5] .
n—oo
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Important theorems

General analysis — finite dimensional

Projection and orthonormal system
Lemma 1.10. Let (E, (-,-)) be an inner product space with associated norm
|||, and let eq,. ... en € E be a finite orthonormal system.

a) Let ¢g= E?:l Ajej  (with A, An € K)  be any linear combina-
tion of the ¢j. Then

(g, en) = ijl Aj (@55 k) = Ak
2 n 2 n 2
and lol? =32 P =32 el

b) ForfeElet Pf=1" (fe;)e;. Then
-

f—Pf Lspan{ey.....e,} and ||Pf|<|f]-

Bessel’s inequality

Combining a) and b) of Lemma 1.10 one obtains Bessel’s inequality®

(L.1) S e =PI < ISP (f € B).

Also extends to inf dim on Hilbert spaces.

~Projection properties

Exercise 1.8. Let {eq,..., e} be a finite orthonormal system in an inner product
space (E, (-,-)), let F' := span{ey,..., en} and let P : E — F be the orthogonal
projection onto F. Show that the following assertions hold:

PPf=Pfforal feE.

If f,g € E are such that g € F'and f — g L F, then g = Pf.

Each f € E has a unique representation as a sum f = u+ v, where u € F and
veFL (Infact, u=Pf.)

a
b

c

d) If f € E issuch that f L F*, then f € F. (Put differently: (F1)+ = F.)

e) Let Qf := f—Pf. f € E. Show that QQf = Qf and |Qf] < |f| for all
fekE.

Cauchy-Schwarz

Theorem 2.1 (Cauchy-Schwarz Inequality’2). Let (E, (-,-)) be an inner

product space with associated norm || f|| :=+/{f.f) for f € E. Then
[(Fal<Ifllgll (f.9 € B,

with equality if and only if [ and g are linearly dependent.

For the proof the following is considered:

P:E — span{g}, Pf= (”f.”qz) g
g

For questions of the form

||fg|| < c||f]|, try to write to a form
1< f.g >12 < |IfI[*|lgl|’, ie. C-s.

Erik Leering Operator Theory

Triangle inequalities
[If +gl| < |If1] +|lgl],
A1 =gl < 11f - gl

Lebesque and infinite dimensions

On the Lebesque integral: Dominated convergence

Theorem 7.16 (Dominated Convergence Theorem). Let (fy)nen be a se-
quence in LNX) such that f := lim, .o f, exists pointwise almost every-
where. If there is 0 < g € LN X) such that |fu| < g almost everywhere, for
each n € N, then f € INX), || [, — flly =0 and

/fnd)\affd/\.
JX JX

On the inf dimensional projection operator

Theorem 8.8. Let ' be a closed subspace of a Hilbert space H. Then the
orthogonal projection Pp has the following properties:

a) PrfeF and f—Prf Ll F forallfecH.
b) PpfeF and |f—Prfll=d(f F) foralfecH.
¢) Pp:H — H is a bounded linear mapping satisfying (Pr)? = Pr and
IPrAI<If (FeH).
In particular, either F'= {0} or ||Pr|| = 1.
d) ran(Prp)=F and ker(Pp)=F-.
e) 1 — Pr = Pp., the orthogonal projection onto F—.

Riesz-Fréchet

Theorem 8.12 (Riesz-Fréchet!). Let H be a Hilbert space and let v : H —
K be a bounded linear functional on H. Then there exists a unique g € H
such that

o(f)={f.g)  forall feH.

Decomposition of LA2

Lemma 10.5. The space Lz(u.b] de COmMposes n/'//m}z/mu/l/j/ into
[%(a,b) = C1 & {¥' | 4 € Clla,b]},

with ||-||,-closure on the right-hand side.

Note that C1 is the space of constant functions.
Gives as corollary the fundamental thm of calc:

Corollary 10.7. One has H'(a,b) C Cla,b]. More precisely, f € H'(a,b) if
and only if f has a representation

f=Jdg+ecl
with g € 1*(a,b) and ¢ € K. Such a representation is unique, namely
(£ _ gy
g=/[ and c= %,

Moreover, the fundamental theorem of calculus holds, i.e.,

d
f f'(s)ds = f(d) — f(c) for every interval [e,d] C [a,b].
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Operator theory:

Theorem 11.2. Let 1 < p < oo. If f € IP(X) and g € IP(Y), then
foge (X xY) with |f ® gllyx.vy = 1flmex) 190wy, Moreover, the
space

span{f®@g | felP(X), gelr(Y)}
is dense in IP(X x Y).

Fubini

The integral of an integrable function f € LI(X x V) with respect to
two-dimensional Lebesgue measure is computed via iterated integration in
either order:

Cda? =
Xxyf(-)dA /Xfyf(r.y)dydr_

This is called Fubini’s theorem® and it includes the statement that if one
integrates out just one variable, the function

v [ty

is again measurable
Ez integration

Lemma 11.3. Let f € INa,b) and n € N. Then
) 1 t
(I i)y = W[ (t—s)""'f(s)ds forallt < [a,b].
In particular, J is again an integral operator, with kernel function

ea(t,8) = gy () — o)

(n—1)! (s,t € [a,B]).

Proof. This is proved by induction and Fubini’s theorem. a]

Example 11.9 (Integration Operator). The n-th power of the integration
operator .J on E = Cla, b] is induced by the integral kernel

{— gyt
kn(t,8) = 1{51”“"5){(”%)1)!'

From this it follows that [|J"(| ;) = Ya# 17" = ||J|™. (See Exercise 11.7.)
The above uses HS-operators from the operator summary.

Lax-Milgram:

Let a: V x V — K be a sesquilinear mapping with the following prop-
erties:

1) ais bounded, ic.. there is ¢ > 0 such that
(12.6) la(w,v) < clluly oy (woeV).
2) ais coercive, ie., there is § > 0 such that

— ;
la(u. u)| = o [u]| (weV).
(The number § is called the coercivity constant.)

Then we have the following theorem

Theorem 12.13 (Lax-Milgram®®). In the situation described above, for
each f € H there is a unique u €V such that

a(u,v) = (f,v)y forallveV
Moreover, the operator A : H — V' defined by Af = u has norm || A|| < C/4.

Spectral Theorem

Theorem 13.11 (Spectral Theorem). Let A be o compact self-adjoint op-
erator on a Hilbert space H. Then A is of the form

(13.1) Af=3 Nle)e  (feH)
for some (finite or countably infinite) orthonormal system (e;); and real

numbers A; # 0 satisfying lim; . A; = 0. Moreover, Ae; = Ae; for each j.

More precisely, the orthonormal system is either (e_,)_?\:1 for some N € N
or (e;)jen. Of course, the condition lim; ,o, A; = 0 is only meaningful in
the second case.

Erik Leering Operator Theory

In fact for A = A™ and the spectral thm we get that A
is characterized somewhat by a projection:

Let us denote by .J the index set for the orthonormal system in the spectral
theorem. So J ={1,....] N} or J = N. Moreover, let

Py: H — ker(A)

be the orthogonal projection onto the kernel of A and P, := 1 — F its
complementary projection. Then we can write

Af=0-Pof+ 3 Niifei)es
for all f € H. This formula is called the spectral decomposition of A.

Corollary 13.12. Let A be as in the spectral theorem (Theorem 13.11).
Then the following assertions hold.

a) Tan(A)=span{e; | j€J} and ker(d)={e; |je J} .
b) Pf= Zﬁj (f.ej)e; forall feH.

c) Ewvery nonzero eigenvalue of A occurs in the sequence (A;)jcy. and its
geometric multiplicity is

dimker(Al — A) = card{j € J | A = A;} < o0.

Baire:
Lemma:

Let (Q,d)be complete, B; = Blx;, 1],
B; 2B, 2 B3 ...
Be a nested sequence of closed balls. If 1, = 0,
then x, — x exists, and N, B, = {x}.

Theorem 15.1 (Baire). Let (£2,d) be a nonempty complete metric space
and let (An)nen be a sequence of closed subsets of §2 such that

2=J A

Then there is n € N and x € 2,1 > 0 with B(x.r) C A,.
Alternatively:

1. If 3(0,) € Qopen s.t. 0, = QVn €N
- No, # 0.
2. If 30, € Qopen s.t. 0, =QVneN
- No, = Q.
Banach-Steinhaus
Theorem 15.6 (Banach-Steinhaus?). Let E.F be Banach spaces, and let
(To)nen € L(E; F) be a sequenee such that
Ti= nll»n;lc Tnf

exists for every f € E. Then T is a bounded operator, (1,,)nen is uniformly
bounded, and

|7 < liminf |75 .
n—oc

OMP:

Theorem 15.8 (Open Mapping Theorem). Let E. F' be Banach spaces and
let T : E — F be a bounded linear mapping which is surjective. Then there
is a > 0 such that for each g € F there is f € E with ||f|| £ a||g|| and
Tf=g.

Alternatively, T maps open subsets of E onto open

subsets of F.

If T is invertible then the inverse is bounded and the
statement also holds for T™1.
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Approximate surjectivity:

Theorem 15.11. Let E, F' be Banach spaces, and let T € L(E; F'). Suppose
that there exist 0 < g < 1 and a > 0 such that for every g € F with ||g|| < 1
there is f € E such that

|fl <a and |Tf—g| <gq.
Then for each g € F there is f € E such that Tf = g and ||f| < li—q |g]|-

So approx. surjectivity implies surjectivity with an estimate
of the pre-image.

Closed graph theorem:

DefT:E — F has a closed graph if

Iy rf =gV feEgeF

Th~g S ebger
In other words, if graph(T) = {(f,Tf)| f € E}is closed
inthe normed VS E x F.

THM: E,F Banach,thenT is bnd if f
graph(T) is closed

Tietze: (not very enlightening)

Tietze’s Theorem. Let (£2,d) be a metric space. Any subset A € {2 is
a metric space with respect to the induced metric, and if f € Cy(£2) is a
bounded continuous function, one can consider its restriction

Tf:=flaeCp(4)

to the set A. The operator T : Cp(f2) — Cp(A) is linear with [|T|| < 1.
Tietze's theorem states that if A is closed, then T is surjective.

Theorem 15.15 (Tietze®). Let (22,d) a metric space, A C 2 a closed
subset and g € Cp(A;R). Then there is h € Cy(£2;R) such that h|a = g and

12lloe = ll9llc-

Erik Leering Operator Theory

Duality theorems:

Below | conclude with only stuff about duality CH16
since it has to be somewhere, but not in a separate
file. Dual def is in the spaces of note.

Does E’ always exist (nonzero)?

Often yes: E fin dim, E’ same dim
E inner product space, E’=E.

Idea: the dual may be rich enough to distinguish
points in E based on evaluation with pointin E’:
Vx #y €E,Ap €E's.t. p(x) # p(y).

Theorem H Hilbert — H'isometrically
isomorphihc to H. Think of row/col vectors.

Your best mates Riesz-Fréchet say then, as proof:
h,g € Hany ¢ € H'~ <.,m > for somem € H.
@(h) =<hm># @(9)iff <h—gm>%0

General case: Hahn-Banach

For (E,|I.1D,Ey € E & @, € Ej. Then
g €E's.t.o(f) = 9o(f)V f € Ey,
&lloller = llellg,-

Cor: every Hilbert space H with countable basis is
separable.

Corollaries:
-VfEE 3 €E's.t |loll =1and |p()] = If]l.
-VfEEIfll = ||Slﬁpllw(f)l

q) =

-Vf € E, have span(A) = E iff
Vo € E' we have ¢|, =0->¢ =0

If H is a Hilbert space then:

- VfeHgll=1eH:|fll=]<f.g>]
- fll=sup | <f,g>] obviously,
llgll=1

- span(A) = H iff Vg € H have
<f,g>=0vVfeA-g=0.

This last one can be restated as
At ={0}iff g € H with g € At - g = 0. Trivial.

| cannot be bothered with the pf and the further
corollaries.
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Sobolev and Poisson

*Note: this document and the one on operators are heavily linked. | want to keep the document on
operators and spaces as general as possible. Therefore, this document implicitly draws results/facts
from the others.

u' =—f, u(a) =u)=0
To solve this, we need to move to Lebesque spaces and use the weak derivative:
Def: weak derivative:

g € L?(a, b) is said to be a weak derivative of f € L?(a, b) if they satisfy

ff gyds = — f: f'ds holds for every test function ¢ € C¢[a, b].
This can be rewrittenas < g,y >= —< f, ' >

We call the space of all weakly differentiable functions H'(a, b), the first order Sobolev space.

Variational method for Poisson

We could say that u € H?(a, b) since we have a second derivative.

Now rewrite Poisson to < ', u’ >;2= <, f >z, Y € C¢a, b].

We now constrain u to be in the space H3, which is defined as you would expect, with norm

[l = 1] 2
Then we rewrite the RHS by using ¢: Hi(a,b) > C, @(v) =<7, f >2
Then Riesz-Fréchet yields a unique u € Hj (a, b) such that
<V U >=<vu>p=9W) =<v,f >

Forallv € H}(a, b). In short, thereisaus.t. < v',u’ >,= < v, f >,, which holds forall v € H} >
Ci[a, b], as required for our problem.

Dirichlet-Laplacian & Hilbert-Schmidt
Def: Dirichlet-Laplacian: Ap: H3 (a, b) — L?(a, b), Apu=u"

The importance of writing this as an operator is that there is an inverse operator A[)l: L? —» H? that
turns out to be a HS (kernel) integral operator, which turns out to be bounded, which means that the
Poisson problem is well-posed. This is because —Ap! maps the problem to its unique solution.
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Perturbations

u' —Tu=—f, u € H2(a, b). Itturnsout T ‘small enough’ is still well-posed.

We use the property that (A bijective and bounden) + (Poisson well — posed)

- I —TARY:1? - L? is invertible.

Note that we can rewrite this problem using the inverse Dirichlet as —f = (I — TAp)Apu.
Lemma

Now we can just look at conditions s.t. (I — A)u = f has a unique solution, for A € L(E) a
perturbation. Without too much work | note that if f € Eiss.t. u:=YA"f convergesinkE,
then u—Au=f.

Theorem from the above, }||A"|| < 0,— (I — A) is invertible with

(I — A)~! =Y A", the Neumann series.

Returning to our problem, the perturbation is still well-posed if ||TA51|| <1

Then in the book there is Volterra which | skip here.

Using compact-self adjoint & Spectral theorem

We can consider the general eigenvalue equation Au — Au = f

Where f € H Hilbert, A € K, Ais compact self-adjoint. This is solvable under the following
theorem (with (e;) from the spectral theorem):

Theorem 13.13 (Fredholm Alternativel). In the situation above, precisely 3) IfA =0, then (13.2) is solvable if and only if f € ran(A); in this case

one of the following cases holds: one particular solution is
1) If A# 0 is different from every A;, then (A — A) is invertible and wi=y 1% (f,e5) €5
J€S Ay
1, 1 - 1 . this series being indeed convergent.
P _ 1p_ & N e 9 g
u=(A-AN)""f= /\Pof + E jed 3 = (f.ej)e;

ts the unique solution to (13.2).

2) If A # 0 is an eigenvalue of A, then (13.2) has a solution if and only if
f Lker(Al — A). In this case a particular solution is

1. 1 .
w = fxpof + Z]E«],\ N A (f.e5) €5

where Jy :={j € J | \; # A}.

Let us consider then Apu = —f, with its solution —Ax'f = Af = [ g(.,s)f(s)ds,
g(s) the Green function. Note the following:

- AisaHS — operator and hence compact
- kis symmetric and real — valued, hence A is self adjoint
- ker(A) = {0} by construction.

Hence: we can apply the spectral theorem if we can find the eigenvalues and eigenvectors of A.
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So first, to determine the eigenvalues/eigenvectors:

Lemma 14.1. Let A#£0, p = —Y%.. Then
fe LQ(H. b) and Af=Af |+— fedom(Ap) and Apf=pf.

Moreover, in this case either f =0 or A > 0.

Where dom(Ap) = HE(a, b).

By ez DE-theory we have Au = Au, A > 0 if f

U = acos (\/%) + Bsin (t/V2). Now this solution can be further sharpened by the boundary
conditions. In particular, lettinga = 0,b = 1,u(0) =0 -» a = 0.

Thenu(1) =0, # 0 = sin (\/%) =0 - A= ! e, = L sin (nmt) (normalized).

T n2p2’ V2

Furthermore, A is injective to L?, so the system (e,,) is an orthonormal basis for L?(0,1), and:

1 < 1 1
(Af)(t) = /0 g(t,s)f(s)ds = Z (2;3211:2 /0 f(s)sin(nms) da) sin(nmt)

n=1

Which converges by the theory in L? but not necessarily pointwise. However it can be shown
that it does in fact converge uniformly in t=[0,1]. Furthermore:

o0 . .
_ sin(nm - t) sin(nm - s)
9(t,5) = Z 2n?n?
n=1 As an absolutely convergent series in C([0,1]x[0,1]).

Schrédinger operator & Strum Liouville equation

Is just a perturbation of the Dirichlet-Laplacian with a multiplication operator:

Lu= —u" 4+ qu for some q € C[0,1] a positive continuous function, called the potential. Once
again the domain is dom(L) = HZ(0,1). We can consider the eigenvalues of L.

Lu = Au, then u € C?[0,1] and either u =0 or A < 0. In particular, L is injective (1-1).

Sturm-Liouville:

Lu = f,is well-posed for f € L? (0,1),i.e., L: H(} — L? is bijective with bounded inverse. To this end,
we define the new inner product a(u, v) =< u',v' >, +< qu, v >,. The induced norm is
equivalent to the usual norm on H3, and (H3,||.|l,) is a Hilbert space. Then the mapping

v »< v, f >, isbounded, and by Riesz-Fréchet 3!u € H} s.t. a(u,v) =< f,v > Vv € H}.

Forv € C&, then, u € Hg, and Lu = f, and L is bijective. It can also be shown that L1 is bnd.
In the book they show L™ can be found (as a HS-integral operator) but that is cumbersome and
skipped.
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Fourier analysis

From Chapter 1:

The number

1 o 1 ‘
Jn) = (f.en) = /0 f(t)en(t)dt = /0 ft)e™2mnt gy

is called the n-th Fourier coefficient of f. Note that n ranges over the

whole set of integers Z. Bessel’s inequality in this context reads

N =82 2 Lo
(1.3) o< = [P .

With e, (t) = e?nmit

This can be extended after Lebesque and Hilbert to inf dim:

For a function f € L' (R) its Fourier transform Ff is defined by

(9.3) (fﬂuw-éfum*“w (tR).

The integral is well-defined since

/{f(s)e—“ﬂ cl.r:e:/|f(s)ds: If]l; < oo.
JR JIR

Theorem 15.7 (Du Bois-Reymond). There ezists a function f € Cper[0,1]
such that its partial Fourier series at t =0,

Suf )= 30 fRe| =3 F  (meW)

k=—n k=—n

does not converge to f(0).

Need the Dirichlet kernel:

Define the Dirichlet kernel

Di(s) = sm(2n+1)ns.

sin s

so that T, f = fol Dn(s)f(s)ds for f € E. We claim that

1
||Tn||:/O |Dn(s)] ds.

Proof. We consider the linear functionals
T, : Cper[o- 1] — C, Tnf = (Snf)(0)
for n € N. Then
n 1 ] 1 .- .
INEDY / Xk [ (5) ds = / sin@n + DTS 4 g
J0 J0

sin s
k=—n

Moreover, by the triangle inequality for integrals it follows that |(F f)(t)| <

[[f]|; and taking the supremum over t € R we arrive at

(9-4) IFflloe <IIfll (f € L(R)).
This shows that the Fourier transform is a bounded linear operator
F (@@, — (BR), [lo)-

Applying the dominated convergence theorem one can show that Ff is a
continuous function for every f € L}(R); see Exercise 7.21. Regarding the
asympotic behaviour of F f(t) for large values of [t| we have the following

analogue of Theorem 9.19.

Then some stuff and some more
stuff with which | can’t be bothered
and then ||T,, || is the harmonic
series which diverges.

Theorem 9.20 (Riemann Lebesgue®). If f € L}(R), then Ff € C(R) and

lt}im (Ff)t)=0.
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