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Lemma 1.11 (Gram® Schmidt?). Let N € NU{oc} and let (f,)1<n<n be a
linearly independent set of vectors in an inner product space E. Then there
is an orthonormal system (e,)1<n<n in E such that

span{e; | 0 < j < n}=span{f; | 0 < j < n} foralln < N.

Proof. The construction is recursive. By the linear independence, f; cannot

be the zero vector, so e := nyl” f1 has norm one. Let g2 := fo—(f2,€1) €1.

Then g2 L e1. Since fi. fg are linear independent, g2 # 0 and so ez =
yll g )g2 is the next unit vector.

Suppose that we have already constructed pairwise orthogonal unit vec-

tors eq,...,en—1 such that span{ey,... ep—1} = span{fi,..., fo—1}. I
n = N, we are done. Otherwise let

On = fn — Z::_ll (fnr PJ) €5

Then ¢, L ej for all 1 < j < n (Lemma 1.10). Moreover, by the linear
independence of the f; and the construction of the ¢; so far, g, # 0. Hence
€n 1= (yll gnl)9n 1s the next unit vector in the orthonormal system. m

Theorem 2.1 (Cauchy-Schwarz Inequality?). Let (E.(-,-)) be an inner
product space with associated norm || f|| :=\/(f.f) for f € E. Then

(Lol < gl (f.g € E),
with equality if and only if f and g are linearly dependent.

Proof. If ¢ = 0, the inequality reduces to the trivial identity 0 = 0. So
suppose that ¢ # 0 and consider the orthogonal projection

(f f;)
g ||

of E onto the one-dimensional subspace of E' spanned by g¢; cf. page 8. By
Lemma 1.10 we have f — Pf 1 ¢ and hence, by Pythagoras’ Lemma 1.9,

. 2
I = WA +11f = Po* = BT h’” o + 15 - P > W]

with equality if and only if f = Pf, i.e., f € span{g}. i

P : E — span{g}. Pf:=




Example of bounded linear mapping?

= Any linear mapping from K¢ — F, F arbitrary normed space.

Pf: Use Cauchy schwartz

Example 3.12 (Scale of /P-Spaces). Let f : N — K be any scalar sequence.
We claim that

(3.5) [Flle < W Fll2 < [ flly in [0, 00].

For the first inequality we note that we have |f(j)| < || f||, for every j € N,
and hence we can take the supremum over j to obtain ||f|, < . For

the second inequality we estimate

um%}]m Z]mn Zj £l = IF1I
=1 =1

Example 3.14 (p-Norms on Cla,b]). For each interval [a,b] C R we have
(3.6) Il < vb—alflly and |[flly < Vb—alfll
for all f € Cla,l].

Proof. The first inequality follows from Cauchy—Schwarz and

b
70 = [ 191 = 1511 < 1702l = VE=a 51,

where we have written 1 for the function which is constantly equal to 1.

The second inequality follows from

b b
Is13= [ 1< [ =0-wla. .



Exercise 3.4. Show that the inclusions
tC?Coree
are all strict. Give an example of sequences (f,,)nens (Gn)nen in 1 with

[falloe = 0, WIfnlly = 00 and lgnlly = 0, [lgnlly — oo.

Lemma 4.9 (Second triangle inequality). Let ({2.d) be a metric space.
Then

jd(x,2) — d(y, w)
Proof. The triangle inequality d(x.2) < d(x,y) + d(y, w) + d(w, z) yields
d(z,z) —d(y,w) < d(x,y) + d(w, z).

< d(x,y)+ d(z, w) for all x,y, >, w e (2.

Interchanging the roles of x.y and =z, w leads to
—(d(x,2) —d(y,w)) =d(y,w) —d(z,z) <d(y,z)+d(z,w).

Combining both inequalities concludes the proof. i

Theorem 4.16. A linear mapping 1" : E — F between two normed spaces
(E,||-||g) and (F.,||-||p) is continuous if and only if it is bounded.

Proof. Suppose that T is bounded. Then, if f,, — f in E is an arbitrary
convergent sequence in F,

1T fo =T Fllp =IT(fn = Hllr <ITlpegllfn—fllg =0

asn — o0o. So T'f, = Tf, hence T is continuous.

For the converse, suppose that 7" is not bounded. Then ||T'|| as defined in
(2.2) is not finite. Hence there is a sequence of vectors (¢, )nen in £ such
that

loml <1 and |Tgall = (neN).

Define [, := {}{n)gn- Then “fn” = (%n) ”(JRH < ]7;’1 — 0, but
IT full = [|T(Cr)gn)|| = () 1T gnl > 1

for all n € N. Hence T'f,, /4 0 and therefore T is not continuous. o



Lemma 4.20. Let A C (2 be subset of a metric space (£2,d). If A is
compact, then A is closed in §2; and if {) is compact and A is closed in (2,
then A is compact.

Proof. For the first assertion, suppose that A is compact and let (z,),zn be
a sequence in A with x, — = € (2. By compactness, there is a subsequence
(zpn, )kenw converging to some element y € A. But also z,, — z, and as

limits are unique, ©+ = y € A. The second statement is left as an (easy)
exercise. |

Theorem 4.21 (Bolzano' Weierstrass). With respect to the Euclidean met-

ric on K a subset A C K9 is (sequentially) compact if and only if it is closed
and bounded.



Theorem 4.29. Let E be a finite dimensional linear space. Then all norms
on E are equivalent.

Proof. By choosing an algebraic basis e1.....¢; in E we may suppose that
E =K% and {eq....,eq} is the canonical basis.
Let ||-|| be any norm on K?. We shall prove that ||-|| and ||-||; are equivalent,

the latter being the Euclidean norm. Define

d 9 ]?H?
= (S0 lel?)

Then ||z|| < my ||z|, for all z € E = K9 see Example 2.19. By the second
triangle inequality

)l = llyll| < llz =yl < myllz =yl

we obtain that the norm mapping
d
(K% 0-lp) — Ry, = ||

is continuous. By Bolzano-Weierstrass (Theorem 4.21), the Euclidean unit

sphere

S = {z e K| ||z|ly = 1}
is compact. Hence by Corollary 4.24 there is #/ € S~! such that
|«'[| = inf{|ly]l |y €S}

Now, because ||2'| = 1 we must have 2’ # 0 and since ||-|| is a norm,
|2’|| > 0. By Theorem 4.26, implication (v)=-(i), we conclude that there is
me9 > 0 such that

|zlly < mallz]| for all z € K% o

Theorem 4.37. A normed space E is separable if and only if there is a
countable set M C E such that span(M) is dense in E.

Only know by heart.

Corollary 4.34. In each infinite-dimensional normed space E there is a
sequence of unit vectors (fn)nen such that ||fn — fml| = 1 for all n,m € N
with n # m.

Only know by heart.



Example 5.10. Every finite-dimensional normed space is a Banach space.

Proof. All norms on a finite-dimensional space are equivalent. It is easy to
see (Exercise 5.2) that equivalent norms have the same Cauchy sequences.
As we know completeness for the Euclidean norm, we are done. 0

Example 5.11. Let (2 be a nonempty set. Then (B(12),-||,) is a Banach
space.

Note here B means the set of all bounded functions, not a ball.

Only know by heart

Example 5.13. The space Cla,b] is a Banach space with respect to the
supremum norm ||-|| .

Only know by heart

Definition 7.1. The Lebesgue outer measure of a set A C R is

/\*(;1) = lIlf anl ‘Qn|

where the infimum is taken over all sequences of intervals (Q,,),en such that
A C U, en @n- (Such a sequence is called a cover of A.)

Know by heart



Theorem 7.16 (Dominated Convergence Theorem). Let (f,)nen be a se-
quence in Ll(X ) such that f = lim, oo fn exists pointwise almost every-
where. If there is 0 < g € 1N X)) such that |f,| < g almost everywhere, for
eachn € N, then f € INX), ||f, — fll; = 0 and

fndA— | fdA
X X
Proof. Note that the function f here is defined only almost everywhere.
But as such it determines a unique equivalence class modulo equality almost
everywhere. It is actually easy to see that f € L} X): since f,, — f almost
everywhere and |f,,| < ¢ almost everywhere, for every n € N, by “throwing
away” countably many null sets we see that | f| < ¢ almost everywhere, and

hence
/|fdA§/gdA<oo
X X

since g € I} X). So, indeed, f € I}(X).

Second. if we know already that | f,, — f]|; — 0, then the convergence of the

integrals is clear from
fncl)\—f fdA = ‘/ fn— fdA
X X X

(Lemma 7.8). In other words, the integral is a bounded linear mapping from
HX) to K.

So the real step in the dominated convergence theorem is the assertion that
|f — fall; = 0. A proof is in Exercise 7.28. O

< |l fo=flly =0




Theorem 7.18 (Completeness of It). The space M X) is a Banach space.
More precisely. let (f,)nen be a Cauchy sequence in 1}(X). Then there are
functions f.g € LN X) and a subsequence (f,, )ken such that

[l <9 e and fo, = f ae.
Furthermore, | f,, — f|l; = 0.

Proof. Note first that if we have found f.g and the subsequence with the
stated properties, then || f,, — f||; — 0 by dominated convergence, and
hence || f, — f|l; = 0 since the sequence ( fy,)pen is ||-||;-Cauchy.

We find the subsequence in the following way. By using the Cauchy property
we may pick ng < ngy1, k € N such tha’E an,e = Jraga Hl < 9¢- To facilitate
notation let gy := fp,. Then for every N € N,

N N x4
/ D 1ok = grer] AN =D llgr — grsally <D oF =
X k=0 k=0 k=0~

Define G := 37~ |9k — gr+1| pointwise. Then by the monotone convergence

theorem
GdA\ = 11111 / lgk — grev1] AN < 2
/. Xz ;

and hence G € LN X). By Lemma 7.14, 3774 |0k — gky1| = G < 00 ace.
Hence for almost all » € X the limit

= 3" ok(2) — grea(2) = go(2) — lim_gnia(2)
k=0

exists. Hence g — f := go — h almost everywhere, and

k—1
gkl < lgol + > 195 — gj1] < lgo| + G ace.
j=0
Thus, if we set g := |go| + G, the theorem is completely proved. |



Theorem 7.22 (Holder’s Inequality). Let q be the dual exponent defined by
YWYy =1.If f e 1P(X) and g € L4(X), then fg € LH(X) and

| [ gaax] <11, Tl

Proof. The case p,q € {1,000} has been treated above, so we shall suppose
1 < p,q < oo in the following. The proof proceeds as the proof of Theorem
2.30. Recall from Lemma 2.31 the identity
tP =1
ab = inf —a? + —b?
t>0 p q

for real numbers a,b > 0. Inserting a = |f(2)|.b = |g(2)| we obtain

F@)g(@)] < ‘;—p F@)P + % lg(2) 9

for all £ > 0 and all » € X. Integrating vields

tP . t—4
/ |fg| dA < —f |fIP A\ + —/ lg|? dA
X P Jx 49 Jx

for all £ > 0. Taking the infimum over ¢ > 0 a.gain yields

h . i p( o q(
fXIfQ| dASmf [ /|j| o+ /|g| 1)\]
Yo
( / 7P dA) ( / 9|7 d/\) = 1171, llll, -

This shows that fg € Ll( ) and concludes the proof. O



Density. Finally, we return to our starting point, namely the question of
a natural “completion” of Cla.b] with respect to ||-||; or ||-||o. If X = [a.b]
Is a finite interval, 1 < p < 0o and }’p + }’q = 1, then one has
Cla,b] C Cp(a.b) C I*°(a,b) C IP(a.b) C L(a.b)
with
1 .
71, <®—a)|fl, forall feIP(a.b).
1 .
11, <®=a)?|fll forall f €1=(a,b),

Ifle= Il forall f€Cyla.b).

(The proot is an exercise.) The following result gives the desired answer Ex.7.15
to our question. but once again, we can do nothing but quote the result
without being able to provide a proof here.

Theorem 7.24. The space Cla,b] is ||-||,-dense in IP(a,b) for 1 < p < co.

Note: The space Cy(a,b) is not ||-||;-dense in I7°(a,b) . Ex.7.16
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Theorem 8.5. Let H be an inner product space, and let A # 0 be a complete
convexr subset of H. Furthermore, let f € H. Then there is a unique vector

Paf =g € A with ||f —g|| =d(f, A).

Proof. Let us define d := d(f, A) = inf{||f — gl | ¢ € A}. For g.h € A we
have %(g+h) € A as A is convex. If both h, g € A minimize |- — f|| we see
from Figure 12 that ¢ = h. Algebraically, we use the parallelogram identity

and compute

lg = hll* = litg — 1) = (h = DI
=2lg— fI* +2]|h = fI* = 4|39+ 1) - [
<2|lg—fIIF+2[h = fI° - 4d*.
Hence, if ||g — f||2 =d?=||h— f||2 and we obtain

lg — h|]* < 2d* + 2d* — 4d® = 0.

To show existence, let (g,),ex be a minimizing sequence in 4, ie., g, € A
and d,, == |[f —gnl| ¢ d. For m > n we replace g,h by ¢,, g, in the
estimation above and obtain

”Qn - gmH2 é 2 Ilgﬂ- - f”2 + 2 ”gm - f||2 - 4d2 g “l(d?; - dz)-

Since d,, — d, also d> — d?. Therefore, (g, )nen is a Cauchy sequence in A,
and since A is complete, there is a limit ¢ := lim,, . g, € 4. But the norm
is continuous, and so

If =gl = lim [|f = g,[| = lim d, =d,
n—oo T—00

and we have found our desired minimizer. 0

11



Corollary 8.10 (Orthogonal Decomposition). Let H be a Hilbert space,
and let F C H be a closed linear subspace. Then every vector f € H can be
written in a unique way as f = u+v where w € F and v € F+.

Proof. Uniqueness: if f = u+v = v’ + ¢ with u,v’ € F and v,v' € F*,
then

u—u =o' —velnF+t={0}
by the definiteness of the scalar product. Hence u = v/, v = ¢’ as claimed.
Existence: Simply set u = Ppf and v = f — Ppf. w

Theorem 8.12 (Riesz Fréchet!). Let H be a Hilbert space and let o : H —
K be a bounded linear functional on H. Then there exists a unique g € H
such that

o(f)=1{f.9)  Jorall f€H.

Proof. Uniqueness: If g,h € H are such that (f.q) = ¢(f) = (f, h) for all
f € H, then

(f.g—h)={f.g9)—(f,h) =(f) —p(f) =0  (f €H).
Hence g — h L H which is only possible if ¢ = h.
Existence: If ¢ = 0, we can take g := 0, so we may suppose that ¢ # 0. In
this case the closed linear subspace ker(y) is not the whole space, so we may
pick an orthogonal vector h L ker(y) with ||h]| = 1. In particular, ¢(h) # 0.
Given f € H we hence have

th—%%h m,<ﬂM=§%.

It follows that o(f) = < f. :,s(h,-)h->. Since f was arbitrary, we may take
g := @(h)h and are done. O
Note h L f — -+ follows from v = @(h)f —@(f)h, @) =0.

Then be careful with the inner product and you are OK.

12



Theorem 8.13. Let (H, (-,-)) be an inner product space and let (fn)nen be
a sequence of pairwise orthogonal elements of H. Consider the statements

(i) The series f =" fn converges in H.
. 2
(11) 220:1 anH < 00.

Then (i) implies (i) and one has Parseval’s identity?

C 2 oo 2
(8.1) A=) lfal
If H is a Hilbert space, then (ii) implies (i).
Only prove (i), (ii) optional

Proof. Write s,, := Z;?:l f; for the partial sums. If f = lim,,_. s,, exists
in H, then by the continuity of the norm and Pythagoras one obtains
lim s,

2
. o
1912 = || i | = il =t | 527 5|

1i m o0
= Tim > 617 = D0 AP

Since || f|| < oo, this implies (ii).

Conversely, suppose that (ii) holds and that H is a Hilbert space. Hence
(i) holds if and only if the partial sums (s, ),en form a Cauchy sequence. If
m > n, then by Pythagoras’ theorem

m
lsm=sull®={| X2 ) = D P DIl 0

as n — oo by (ii), and this concludes the proof. O

IDEA: Use Pythagoras all the time!!!

13



Theorem 8.15. Let H be a Hilbert space, let (ej)jen be an orthonormal
system in H, and let f € H. Then one has Bessel’s inequality

- oo 2 2
(3.2) S e < 7P < oo,
Moreover, the series

Pfi=3 _ (fei)e

is convergent in H, and Pf = Ppf is the orthogonal projection of f onto
the closed subspace

F :=span{e; | j € N}
Finally, one has Parseval’s identity  ||Pf||? = Zool (. ej)|2.
J:

Proof. For Bessel’s inequality it suffices to establish the estimate

> el <IfI?

for arbitrary n € N. This is immediate from Lemma 1.10; see (1.1). By
Bessel’s inequality and the fact that H is complete (by assumption) Theorem
8.13 yields that the sum Pf = ;?il (f.e;)e; is indeed convergent in H
with Parseval’s identity being true.

To see that Pf = Prf we only need to show that Pf € F and f — Pf L F.
Since P f is a limit of sums of vectors in F', and F'is closed, Pf € F. For
the second condition. note that

(f = Pfrex) = (frew) = D (Freid (egen) = (fren) = (fren) =0
for every k. Hence f — Pf L F by Corollary 4.14. O

From 1.10:

I£II> = (f = Pf)+ PFI* = |If = PFI> +IPFI? > [|IPF]?

by Pythagoras’ lemma. -

Lemma 9.17. Let f € It (a.b). Then
b
02 Al =swf] [ 0] g€ Clab. gl <1},

In particular, f =0 a.e. if and only if ff f(s)g(s)ds =0 for all g € Cla,b].

Only know by heart

14



Lemma 10.5. The space 12(a,b) decomposes orthogonally into

[?(a,b) = C1 & {¢' | 1 € Clla.b]}.

with ||-||5-closure on the right-hand side.

Corollary 10.7. One has H'(a,b) C Cla,b]. More precisely, f € H'(a,b) if
and only if f has a representation

f=Jg+cl
with g € I?(a.b) and ¢ € K. Such a representation is unique, namely
(f =J1.1)

/
= d L= .
g=f' and e= =

Moreover, the fundamental theorem of calculus holds, i.e.,
d
f f'(s)ds = f(d) — f(c) for every interval [c,d] C [a,b].

Only know by heart: this is how L? relates to derivatives, and how H! relates to LZ.

Lemma 10.10 (Poincaré Inequality?). There is a constant C > 0 depending
on b — a such that

(10.8) lullpy < Cllullr
for all uw € Hy(a,b). In particular, (10.7) is an inner product and ||-HH{1) s a

norm on Hi(a.b).

Proof. Let u € H}(a,b). We claim that v = Ju/. Indeed, if (Ju') = v’ and
by Corollary 10.6 Ju' — u = ¢ is a constant. But Ju' — u vanishes at a and
hence ¢ = 0. Using Ju' = u we finally obtain

[ullz = Ju' [z < Oy

for some constant C, since by Lemma 10.4 the integration operator .J is
bounded on I?(a,b). The remaining statements follow readily. O

15



Lemma 11.3. Let f € I'(a,b) and n € N. Then

1 ! _
(JUF)(E) = ] / (t—s)" Lf(s)ds forallt < a,b].
In particular, J" is again an integral operator, with kernel function
1
kn(t,s) = ml[a,f](s}{f —s)"t (s, € [a,b]).

Proof. This is proved by induction and Fubini’s theorem. O

Example 11.9 (Integration Operator). The n-th power of the integration
operator J on E = C[a, b] is induced by the integral kernel

{f._ _ S}n—l
(n—1)! "~
From this it follows that |[J"(|; g = Ya# 1" = || J||™. (See Exercise 11.7.)

n(t,8) = sty (£,5)

Only know by heart; Fubini only tells you how to integrate a function of 2 variables.

Definition 12.1. An operator A : E — F' between normed spaces £ and
F'is called of finite rank or a finite-dimensional operator if ran(4)
has finite dimension. And it is called finitely approximable if there is

a sequence (A, ),en of finite-dimensional operators in L(FE; F') such that
4471 - 14 %‘ 0.

Definition 12.5. A linear operator A : E — F' between Banach spaces
E. F' is called compact if it has the property that whenever (f,),cx is a

bounded sequence in £, then the sequence (Af,),eny C F' has a convergent
subsequence.

16



Corollary 12.10. Let H.K be Hilbert spaces. and let A : H — K be a
bounded linear operator. Then there is a unique bounded linear operator

A*: K — H such that
(Af.9) = (f,A%g)y forall feH, g€ K.
Furthermore, one has (A*)* = A and ||A*|| = || A]|.

Theorem 12.9. Let H, K be Hilbert spaces, and let b : H x K — K be a
sesquilinear form which is bounded, i.e., there is ¢ > 0 such that

b(f,9) <ellfll llgl  forall feH, g K.
Then there is a unigue linear operator B : K — H such that

(12.2) b(f.g)=(f,Bg) foral feH, gecK.
The operator B is bounded and || B|| < c.

Proof. Uniqueness: if B and B’ are two operators with (12.2) then for each
g € K we have (Bg—B'g) L H,ie., Bg—B'g=0. Hence, B=B'".

Existence: Fix g € K. Then the mapping
p:H—=K,  fr—b(f9)

is a linear functional on H. By (12.2), ¢ is bounded, with ||¢|| < ¢||g||. The
Riesz—Fréchet theorem yields an element h € H that induces this functional,
i.e., such that

b(f.q) = ¢(f) = (f.h) forall f e H.

The element h is unique with this property, and depends only on g, so we
are allowed to write Bg := h. This defines Bg € H for each g € K.

For the linearity of B we observe that for given g,h € K and A € K,
(f,B(Ag + h)) = b(f,Ag + h) = b(f, 9)A + b(f, h)
= (f,Bg) A+ (f, Bh) = (f,\Bg + Bh)
for all f € H, whence B(Ag + h) = ABg + Bh.
The boundedness of B follows from

|1Bgll = sup |(f, Bg)| = sup [b(f,g)| < sup c||f]|llgll = cllgll
lIfll=1 Ifll=1 [ fll=1

(cf. Example 2.23.) o

Proof. Only the last two statements have not been proved yet. Observe
that

(0.(A%) ) = (A%, f) = (. A%g) = (AT 9) = (0. AJ)
for all f € H, g € K. This implies that (A*)* = A. But then [|A| =
[[(A")*] < [|A*] < ||A|| and the theorem is completely proved. o

Summary: try to apply Riesz-Fréchet for existence. Uniqueness is OK.

17



Definition 13.2. Let E be a normed space and A : £ — E a bounded
operator. A scalar A € K is called an approximate eigenvalue of A if
there is a sequence (f,)nen in £ such that ||f,|| = 1 for all n € N and

Afy, — Al — 0.

Lemma 13.4. Let A be a bounded operator on the Banach space E. If \I— A
is invertible, then A\ cannot be an approrimate eigenvalue. If |\| > || Al, then
M — A is invertible.

Proof. If

Afn — Aol = 0 and Al — A is invertible, then
fo=(—A) Y Nf, —Af,) =0

which contradicts the requirement that || f,|| = 1 for all n € N. Take |A| >
A|. Then |[A71A]| < 1 and hence

AL— 4 =\1-\"14)

is invertible with

oAy 1 > —1 4\ _ > —(n+1) gn
(N[ —A)"t =) Zn:o()‘ At = anl A A
(Theorem 11.13). O

Theorem 11.13. Let E be a Banach space and let A € L(E) be such that
ST A" < oo
n=>0

Then the operator 1 — A s invertible and its inverse is given by the so-called

Neumann series®
o0
I—A)t=) A"
n=0

18



Theorem 13.8. Let A be a bounded self-adjoint operator on a Hilbert space
A. Then (Af. f) €eR for all f € H and

[Al = Al = sup{[{Af. )] | f € H, | f[| =1}

The quantity || Al is called the numerical radius of A.

Proof. One has (Af, f) = ([, Af) = (Af, f) so (Af, f) is real. By Cauchy
Schwarz,

AL DL IAFILIFL < AP = 1Al
if ||f|| = 1. This proves that || A|| < [|A]|.

Lemma 13.10. Let A be a compact self-adjoint operator on a Hilbert space.
Then A has an eigenvalue \ such that |\ = ||A]|.

Only know by heart for the following theorem

19



Theorem 13.11 (Spectral Theorem). Let A be a compact self-adjoint op-
erator on a Hilbert space H. Then A is of the form

(13.1) Af = Z ejye;  (feH)

for some (finite or countably infinite) orthonormal system (e;); and real
numbers Aj # 0 satisfying limj_ o Aj = 0. Moreover, Aej = Aej for each j.

More precisely, the orthonormal system is either (ej) ; for some N € N
or (ej)jen. Of course, the condition lim;_,o Aj = 0 is only meaningful in
the second case.

Proof. We shall find (e;,A;) step by step. If A = 0, then there is nothing
to show. So let us assume that ||Al| > 0.

Write H; = H. By Lemma 13.10, A has an eigenvalue Ay such that |A;| =
[|Al]. Let ey € H be such that ||e;|| =1 and Aeq = Ajey.

Now F} := span{e;} is clearly an A-invariant linear subspace of H;. By
Lemma 13.9.¢c), Hy := Ff‘ is also A-invariant. Hence we can consider the
restriction A|Ho of A on Hy and iterate. If A|Hy = 0, the process stops. If
not, since A|Hs is a compact self-adjoint operator on Hj, we can find a unit
vector ez and a scalar Ay such that Aes = Azeq and

|)\2| = HA‘H‘ZH,C(H?) = ”AlHl”g;(Hl) .

After n steps we have constructed an orthonormal system e, ..., e, and a
sequence Ay, ..., A, such that

Acj = Ajej, Al = ||A|Hj\|z;(HJ) where ;= {ey... --ej—l}L

forall j = 1,...,n. In the next step define H, .1 := {e1,....en }-, note that
it is A-invariant and consider the restriction A|H, 4+, thereon. This is again
a compact self-adjoint operator. If A|H,, 1 = 0, the process stops, otherwise
one can find a unit eigenvector associated with an eigenvalue A, such that

Ania| = 1A Hopall g i

nt1)
Suppose that the process stops after the n-th step. Then A|H,,.; = 0. If
f € H, then

n .
f- ijl (f.ej)ej €{er . eny™ = Hun
and so A maps it to 0; this means that

Af =AY (fee =30 (he)de =301 N(fe)e

ie., (13.1). Now suppose that the process does not stop, ie.,
||A|Hy| > 0 for all n € N. We claim that |A;| — 0, and suppose to-
wards a contradiction that this is not the case. Then there is € > 0 such
that |A,| > € for all n € M. But then

l[Ae; — Aexll* = I\ies = Merll® = [N + [Ae* = 262

for all j # k. So (Aej)jcw cannot have a convergent subsequence, contra-
dicting the compactness of A.

Now let f € H and define
n—1
v f= Y (feibes € fer,oena}t = Hi

Note that y, is the orthogonal projection of f onto H,, and so ||y, < | f]|.
Hence

[ Aynll < [|A[Hull ggpr,y Nunll < [Aal 1 F]] — O
This implies
n—1
Af = Z}l frejre; = Ayn — 0,

which proves (13.1). o

Proof idea: keep picking |1;| = ||A|H;|| with corresponding eigenvectors.



Theorem 15.1 (Baire). Let (£2,d) be a nonempty complete metric space
and let (Ay)nen be a sequence of closed subsets of 2 such that

2= UNENAH'
Then there is n € N and x € (2,r > 0 with B(x,r) C A,,.
May use the following:

Lemma 15.2 (Principle of Nested Balls). Let ({2,d) be a complete metric
space, and let

Blxy.r1] 2 Blza,ra] 2 Blrs.r3] 2

be a nested sequence of closed balls in it. If r,, — 0. then x = lim,_,~ T,
exists and

(15.1) ﬂneNB[a«n, ra] = {z}.

Proof of Theorem 15.1. We suppose that no A,, contains an open ball,
and claim that then there exists 2 € (2 which is not contained in any A,.
To find that 2 we are going to construct a sequence of nested balls.
In the first step, pick any 21 € 2\ A;. This must exist, otherwise A; = §2,
which trivially contains an open ball. Since A is closed, if r1 > 0 is small
enough one has
AN B[:I?l, '!‘1] = Q)

By hypothesis, As does not contain B(xy,rq), so there is 29 € B(x1,ry) but
x9 & Ag. Since As is closed and B(aq, 1) is open, for ro > 0 small enough
we have

As N Blrg, o) =0 and Blxg,r9] C B(x1,71).
Again by hypothesis, the set A3 does not contain the ball B(xg,r9), and
hence we find x3 € B(xg, o) but 23 & As. Since Aj is closed and B(xg, o)
1s open, for small enough r3 > 0 we have

A3 N Blrg,r3) =0 and Blxs, r3] C B(ag, ).
In this manner we find a nested sequence of balls B[y, ry,] such that
(15.2) Blrn.rn] N A, =0 for all n € N.

Since in each step we can make the radius r, as small as we like, we can
arrange it such that r, — 0. By the principle of nested balls, the centers
(p)nen converge to x € (,on Blzn, ra]. By (15.2), 2 ¢ A, for each n € N,
and the proof is complete. O
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Definition 15.3. Let E, I’ be normed linear spaces. A collection 7 of linear
mappings from E to F' is called uniformly bounded if there is a ¢ > 0
such that
NTfll <ellfll forall fe Fandall T € T.
In other words, 7 is uniformly bounded if each T" € T is bounded and
sup{||T|| | T € T} < o0,

i.e., T is a bounded subset of the normed space L(E; F).

Suppose that T C L(E; F) is a uniformly bounded collection of linear
operators. Then for each f € E one has

ITFI < T £]] < (sup [IS]]) 71
SeT

for all 7" € T, and hence supper |7 f]| < oo. We say that the operator
family T is pointwise bounded. The uniform boundedness principle asserts
that in case that FE is complete, i.e., a Banach space, one has the converse
implication.
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Theorem 15.4 (Uniform Boundedness Principle). Let E be a Banach space,
let F' be a normed space, and let T be a collection of bounded linear operators
from E to F. Then T is uniformly bounded if and only if it is pointwise
bounded.

May use the following Lemma

Lemma 15.5. Let (E.||-||) be a normed space and let K C E be a subset
with the following properties:

1) K is “midpoint-convex”, i.e., if f,g € K, then also Yo(f +g) € K:

2) K is “symmetric”, i.e., if f € K, then also —f € K.

Then, if K contains some open ball of radius r > 0, it also contains B(0,r).

Proof of Theorem 15.4. Let T C L(E:F) be pointwise bounded. For
n € N, define

K,:={feE||Tfl|<nforallTeT}.

Since each T" € T 1s bounded and the norm mapping is continuous, i, is a
closed subset of £. By hypothesis, every f € E' is contained in at least one
K. so

E = K.

neN "

Since E' is complete, Baire's theorem applies and yields n € N, » > 0, and
g € E with B(g.r) C K,. By straightforward arguments, K, is midpoint-
convex and symmetric. Hence Lemma 15.5 implies that B(0,r) C Ky, and
since K, is closed, we have even B0, r] C K, by Exercise 15.1.
Now take f € E with [[f|| < 1. Then rf € B[0,r] C K,,, which means that
r||Tf|| = ||T(rf)|| <n for each T' € T. Dividing by r yields

TfI <" forall T € T,

and hence |T|| <" forall T € T. u
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Theorem 15.6 (Banach Steinhaus?). Let E, F be Banach spaces, and let
(Th)nem € L(E; F) be a sequence such that

Tf:= lim T,f
exists for every f € E. Then T is a bounded operator, (1}, )necr is uniformly

bounded, and
|T|| < liminf |75 .

Proof. For each f € FE, since (T}, f)nem converges, also (|1, f||)nen con-
verges, and therefore sup, .y ||Tnf| < oo. By the uniform boundedness
principle, sup,, oy ||T5| < occ. If f € £ with | f|| <1, then by the continuity
of the norm,

ITF] = lim |T,.f| = limin |T,,f]| < liminf T,
T—r OO TN— OO TN— OO
Taking the supremum over all such f concludes the proof. |

Remember as limit of (T},) bounded linear functionals exists pointwise -> T is bnd and (T,,)
uniformly.

Remember proof as: try to go to uniform boundedness principle.
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Theorem 15.8 (Open Mapping Theorem). Let E| F' be Banach spaces and
let T : E — F be a bounded linear mapping which is surjective. Then there
ts a > 0 such that for each g € F there is f € E with || f|| < al|g| and
Tf=g.

Onto. Remember as closeness of the inverse, in so far as it exists.

May use “Rough surjective + approx. pre-images” = surjective.

Theorem 15.11. Let E. F' be Banach spaces, and let T € L(E; F). Suppose
that there exist 0 < q < 1 and a > 0 such that for every g € F with ||g|| <1
there is f € E such that

[fll<a and |Tf—gl <q
Then for each g € F there is f € E such that T'f = g and ||f|| < 1;:; |gl| -
Then

Proof of Theorem 15.8. Let E, F' be Banach spaces and let 7' € L(E: F)
be surjective. For n € N define

Bp:={g9geF |3feFEst ||f|<n Tf=g}=T(Bgl0,n]).
Note that B,, is midpoint-convex and symmetric, hence — by Exercise 15.3

Ap = DB, has the same properties. Moreover, F' = |J, o Bn, by the
surjectivity of T', and hence

F= UH.GNAH'

Since all the A,, are closed, and F' is complete, Baire’s theorem applies and
we find an n € N such that A,, contains an open ball. But A,, is midpoint-
convex and symmetric, whence by Lemma 15.5 there is » > 0 such that
Be(0,r) C A,. Since A, is closed, we have even

(15.4) Brl0.r] C A, = B, = T(Bg[0.n]).
Dividing by r yields
Br[0,1] € T(B&[0, ).

and this means that the hypotheses of Theorem 15.11 are satisfied with
a =" and any g € (0,1). The conclusion of Theorem 15.11 yields exactly
what we want. O

May use relatively more intuitive explanation, which skips Lemma 15.5.
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Def: graph(T)

The Closed Graph Theorem. Let E. F' be two normed spaces. A linear
mapping 17" : E — F' is said to have a closed graph if

fn—f Tfh—9g — Tf=g

holds for all sequences (f,)peny in E and all f € E, g € F. That means, T
has closed graph if its graph

eraph(T) = {(1.Tf) | f € E}

is closed in the normed space E x F'; see Exercise 4.20.

Theorem 15.12 (Closed Graph Theorem). If E, F are Banach spaces and
T : E — F is a linear mapping, then T is bounded if and only if it has a
closed graph.

Proof uses following cor, also to be proven:

Corollary 15.10. Let E be a linear space that is a Banach space with respect

to either one of two given norms ||-||; and |-||y on E. If there is M > 0 with
[flla < M[flly  forall feE,

then the two norms are equivalent.

Proof. The hypothesis just says that I : (E.||-||;) = (E.]|:||3) is bounded.
If both are Banach spaces, Corollary 15.9 applies, and hence I = .
(E.||l5) = (E.]-]|5) is bounded, too. This yields a constant M’ > 0 such
that || f||; < M"||f||; for every f € E. and hence both norms are equivalent.

O
Uses 15.9, which says that if T is 1-1 & onto, 3T~ which is bounded by some other M’.

Proof. Define the new norm || f|| = ||f||g + ||Tf||p for f € E. Then
| fllg < | fll for each f € E. The closedness of the graph of 7" and since
both E, F' are complete implies that E' is complete with respect to this new
norm. Hence by Corollary 15.10 there must be a constant ¢ > 0 such that

[T < WAL < clif]l for all f € E. g

Other way is easy.

Definition of seperable normed space: if it contains a fundamental set, span{f,} = E.
This should be countable.
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Theorem 16.2 (Hahn Banach,! Separable Case). Let E be a separable
normed space over the scalar field K. Let Eg C E be a subspace and pg € E)
a bounded linear functional on Ey. Then there is an extension o € E' of ¢
to all of E with ||¢| = ||¢ol|-

May use

Lemma 16.1. Lel E be a real linear space and let p : E— R be a sublinear
functional. Furthermore. let I' C E be a linear subspace, ¢ : F' = R a linear
mapping with ¢ < p on F. Given any h € E\ F there is o € R such that
the definition

Fi =F®Rh, ¢i(f+th):=¢(f)+at (teR, feF)
yields a linear mapping @1 : F1 — R with o1|p = ¢ and o1 < p on Fj.

And

Theorem 9.28 (Extension Theorem). Let E be a normed space and let
Eg C E be a dense subspace. Furthermore, let 1y : Ey — F be a bounded lin-
ear operator into a Banach space F. Then Ty extends uniquely to a hounded
linear operator T : E — F. Moreover, T' has the same norm as 1Ty, i.e..

||THE%F - ||TD||D4,F .

Proof. For the proof we first suppose that K = R and (without loss of
generality) |[¢g|| = 1. Then define the sublinear functional p : E — R by
p(f):=|f| for f € E. Then ¢¢ < p on Ej.

Since E is separable we can find a countable fundamental set {f,, | n €
N}. Define E,, := Eg +span{fi,.... fo} for n € N and obtain an increasing
chain of subspaces

EoyCE1CEy---CE.

Passing from E), to Ej, 41 either nothing changes or the dimension increases
by one. By Lemma 16.1 we can extend yg stepwise along this chain of
subspaces to obtain a linear functional

Yoo Foo =R on Ey := Ey+span{fi, fo,...} = UneNEn
extending g and satisfying o < p on E.. But this means that
oo (/) < |Ifl| forall f e Ex,
L.e., Yoo is bounded with norm < 1. The extension theorem (Theorem 9.28)

then yields an extension of ¢, to a bounded linear functional ¢ € E’ with
the same norm, and that is what we were aiming at.
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Examples

Examples

Counter-examples

Compactness

Any closed subset of a compact space

The closed unit ball in [?

Closed unit interval of real numbers.

In fact any infinite dimensional inner product
space has this: take in it any sequence that is
pairwise orthogonal as a counter-example.

Complete

L? with proper norm

Cla, b] with the standard inner product

Any normed space with countable algebraic
basis

Finite rank operators

Any bounded linear functional has rank 1

Integration operator (generally)

Finitely approximable operators

Hilbert-Schmidth integral operators

Compact operators

Any finitely approximable operator from a
Banach space to a Hilbert space.

Adjoint operators, A~A" s.t. < Ax,y > =< x, A"

y >

Any matrix with its transpose

The right and left — shift operators on 12

Operator with eigenvalues

Identity operator has A = 1

Multiplication operator:

ANHE =t f(®)

Operator with approximate eigenvalues

Multiplication operator

Self-adjoint operators A = A*

Every orthogonal projection

Every Hilbert-Schmidt integral operator, if we
have k(x,y) = k(y,x) for a.e. x,y € (a,b)

Of an application of the Spectral theorem for self-adjoint operators

It helps to describe nasty differential equations.
Especially useful in showing convergence &
existence of solutions

Seperable spaces (they have a countable fundamental set)

|r

lOO

: consider the set of {0,1} sequences, which is
an uncountable discrete metric space.
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