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AFA is big enough as it is 
We have a hundred spaces, norms on these spaces, and operators. I don’t want to learn them all 

by heart and I don’t want to read through the entire book to find the correct definitions.  
 

So I present these pages in which they can be concisely found!  
Ignore the ugly page numbering 
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Erik Leering Introduction 

Introductory note 
The central topics of AFA to my understanding are that of completeness of a certain normed space 

and boundedness of operators. 

Completeness is of central importance because of the nice properties that follow from it. To this end 

we even go as far as to define a new integral using the techniques of Lebesque. In particular, Hilbert 

spaces have nice properties. From CH8, letting 𝐻 be a Hilbert space: 

- 𝐹 ⊆ 𝐻 a closed linear subspace → ∃! 𝑃𝐹 𝑓 ∈ 𝐹 a best approximation of 𝑓 ∈ 𝐻. 

- 𝑹𝒊𝒆𝒔𝒛 − 𝑭𝒓é𝒄𝒉𝒆𝒕: each functional 𝜑 ∈ ℒ(𝐻; 𝕂) can uniquely be described by one element 

𝑔 ∈ 𝐻:   𝜑(𝑓) = < 𝑓, 𝑔 >𝐻   ∀𝑓 ∈ 𝐻. 

- Other theorems such as Parseval, Bessel & Parseval’s identity hold on Hilbert spaces. 

- By the appendix F, every Hilbert space contains a (possibly uncountable) maximal ONS.  

Such a maximal ONS ~ ONB, nearly fully describes the Hilbert space (CH 8 properties).  

If the Hilbert space is separable, then every orthonormal system in it is at most countable!  

On completeness & Completion 

 

 

I strongly recommend having at least a look at Appendix B to find some intuition on this idea. It 

would have been nice if this material was included formally as it does give some good insight about 

the nature of “completeness” (or rather, the absence of it).  

Bounded linear mappings/operators 
Are relevant for their convenient properties as well, many of which are obvious. Riesz-Fréchet only 

works on bounded linear mappings. Many of the useful operators that we encounter (of which many 

are listed in this summary), are bounded. Boundedness plays an essential role in solving certain 

differential equations (chapters 10-11). For such operators, we can speak of (approximate) 

eigenvalues. The spectral theorem and its consequences apply to special bounded operators.  

Also, the uniform boundedness principle and the open mapping theorem concern bounded 

operators. This should convince you of their usefulness.  
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Erik Leering Definitions 

Afa Definitions 
 

Space structure Complete name 
(Ω, <. , . >) inner pr Hilbert 

(Ω, ||. ||) Normed Banach 

(Ω, 𝑑(. , . )) metric Complete 

 

Structural properties 
Inner product:  

 

Norm: 

 

 

Operator definitions, for T 
Bounded ∃𝑐 ≥ 0  𝑠. 𝑡.  ||𝑇𝑓|| ≤ 𝑐||𝑓|| ∀𝑓 ∈ 𝐸. 

Operator norm ||𝑇|| ≔ 𝑠𝑢𝑝||𝑓||≤1||𝑇𝑓|| 

Finite 𝒓𝒂𝒏𝒌(𝑻) ≔ dim(𝑟𝑎𝑛𝑔𝑒(𝑇)) < ∞ 

Finitely approximable if ∃(𝑇𝑛) ∈ ℒ(𝐸; 𝐹) all 

of finite rank such that ||𝑇𝑛 − 𝑇|| → 0. 

Compact operator (𝑓𝑛) 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛 𝐸 →

(𝑇𝑓𝑛) ⊆ 𝐹 has a convergent subsequence.  

 

 

 

Definitions 
CENTRAL: Complete: every Cauchy sequences 

converges to an element in the space.   

(𝒇𝒏) is Cauchy if ∀𝜖 > 0, ∃𝑁 ∈ ℕ 𝑠. 𝑡.  𝑛, 𝑚 >

𝑁 → ||𝑓𝑛 − 𝑓𝑚 || < 𝜖 .  

Open set if 𝑂: ∀𝑥 ∈ 𝑂 ∃𝜖 > 0: 𝐵(𝑥, 𝜖) ⊆ 𝑂. 

Closed set 𝐴 =  𝐴̅ ⊆ Ω  

if 𝑥𝑛 ∈ 𝐴  𝑠. 𝑡.  𝑥𝑛 → 𝑥 ∈ Ω ⇒ 𝑥𝑛 → 𝑥 ∈ 𝐴.  

Closure   𝑨̅ ≔ {𝑥 ∈ Ω | ∃𝑥𝑛 ∈ 𝐴  𝑠. 𝑡.  𝑥𝑛 → 𝑥} 

 

Compact (𝛀, 𝒅) is when every sequence in 

the set has a convergent subsequence.  

Compact support: when a function 𝑓 vanishes 

outside a finite interval (a,b).  

Convex: 𝑓, 𝑔 ∈ 𝐴, 𝑡 ∈ [0,1] 

→ 𝑡𝑓 + (1 − 𝑡)𝑔 ∈ 𝐴 

 

A is Lebesque Measure is 𝜆∗(𝐴) ≔ inf Σ|𝑄𝑛|  

with 𝑄𝑛  a sequence of intervals that cover A.   

If the Lebesque measure is finite, the set is 

Lebesque measurable.  

𝒇 ∈ 𝑨 is Lebesque measurable if  

{𝑡 ∈ 𝐴 | 𝑎 ≤ 𝑓(𝑡) ≤ 𝑏} ∈ Σ ∀𝑎, 𝑏 ∈ ℝ.  

Isometry: ||𝑇𝑓||
𝐹

= ||𝑓||
𝐸

 ∀ 𝑓.  

Always 1-1, if also onto, then isometric 

isomorphism.  

 

A normed space is seperable if ∃𝐴 ⊆ 𝐸  

countable s.t. 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅(𝐴) = 𝐸. 

e.g. 𝑙2(ℕ)𝑖𝑠 𝑠𝑒𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝐴 = {𝑒𝑛}. 

𝑙∞ 𝑖𝑠 𝑛𝑜𝑡.  

  

Many quick/specific definitions are dropped in this page. For 

definition of certain spaces continue below.  
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Erik Leering   Spaces of Note 

Spaces of note 
For below: I made this to be read left to right, to highlight symmetries. Does not mean everything placed next to each other has symmetry, but you will see the places wher e it 

obviously  does have symmetr y.  

Nor ms: 𝐷𝑝  = discrete p-norm (Σ|xn
|p )1/𝑝,  𝐶𝑝 =  integral p-norm, (∫ |𝑓|𝑝 𝑑𝑠)

1/𝑝
.   OP = ||𝑇|| = inf

||𝑓||≤1
||𝑇𝑓| | 

 

Baire theorem consequences: 
THM:  A normed space with a countable algebraic basis is never complete. Note that countable implies infinite elements.  

So in this context, 𝑅3  is complete, since it has a finite, nut a countable, basis.  

 

 

Space Norm  Space Norm  

𝑐 ∶= {(𝑥𝑛
) ⊆ 𝕂 | 𝑥𝑛 → 𝑥 ∈ 𝕂 } 

 
 

𝐷𝑝=1,𝑝,∞ 
Y 
Y 
Y 

∁(𝐸; 𝐹) ≔ {𝐴 ∈ ℒ(𝐸; 𝐹) | 𝐴 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 }  OP  

𝑐0 ∶= {(𝑥𝑛
) | 𝑥𝑛 → 0} 

 
∁0

(𝐸; 𝐹) ≔ {𝐴 ∈ ℒ(𝐸; 𝐹) | 𝐴 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑏𝑙𝑒 }   OP  

𝑐00 ∶= {(𝑥𝑛
) | 𝑥𝑛 = 0, 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 } 

 
𝐷𝑝=1,𝑝,∞ N 

N 

N 

∁00
(𝐸 ; 𝐹) ≔ {𝐴 ∈ ℒ(𝐸; 𝐹) | 𝐴 ℎ𝑎𝑠 𝑓𝑖𝑛𝑖𝑡𝑒  𝑟𝑎𝑛𝑘 }  OP  

      

ℬ(Ω) ≔  𝑎𝑙𝑙 𝑏𝑜𝑢𝑛𝑑𝑒𝑑  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 Ω 
Note not necessarily continuous. However, this 
kind of proves completeness for the ones below, 
due to closedness of them.  

𝐶1 
𝐶𝑝 
𝐶∞ 

 

N 
N 
Y 

   

𝐶 ∶= the set of continuous functions 𝐶1 
𝐶𝑝 

𝐶∞ 

N 

N 
Y 
 

   

𝐶 1 ≔ the set of once cont. diff. functions.     
𝐶𝑏 ∶= {𝑓 ∈ ℬ(Ω) | 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 }    

𝐶0 ∶= {𝑓 𝑐𝑜𝑛𝑡 | 𝑓(𝑎) = 𝑓(𝑏) = 0}  
Or continuous functions with compact support.  

   

𝐶𝑝𝑒𝑟 ∶= {𝑓 𝑐𝑜𝑛𝑡   | 𝑓(0) = 𝑓(1)}    

𝐶0
1 ∶= 𝐶0 ∩ 𝐶 1 𝐶1 

𝐶𝑝 

𝐶∞ 

N 

N 
N 

(For below: let 𝑋 be any interval, and) 

Σ (⊆ 𝑃(ℝ)): =the set of all Lebesque-measurable sets 
Is the set on which we restrict ourselves.  

--- --- 

   𝑀(𝑋) ≔ {𝑓: 𝑋 → 𝕂  | 𝑓 𝑖𝑠 𝐿𝑒𝑏𝑒𝑠𝑞𝑢𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 }  --- --- 

   ℒ 1 ≔ {𝑓 ∈ 𝑀(𝑋) ∶  ||𝑓||
1

< ∞}  --- --- 

𝑙1 ∶= {(𝑥𝑛
) | Σ|𝑥𝑛

| < ∞} 𝐷1 Y 𝐿1 ∶= ℒ 1/~𝜆   with equivalence relation for almost everywhere 𝐶1 Y 

𝑙2 ∶= {(𝑥𝑛
) | (Σ|xn

|2)1/2 < ∞} 𝐷2 Y 𝐿2 ∶= “” 𝐶2 Y 

𝑙𝑝 ∶= {(𝑥𝑛
) | (Σ|xn

|𝑝 )1/𝑝 < ∞} 𝐷𝑝  Y 𝐿𝑝 ∶= “”  𝐶𝑝 Y 

𝑙∞ ∶= {(𝑥𝑛
)  | sup|𝑥𝑛

| < ∞} 𝐷∞ Y 𝐿∞ ∶=”” with ||𝑓||
𝐿∞ ∶= inf{𝑐 ≥ 0  | |𝑓| ≤ 𝑐, 𝑎. 𝑒. } 𝐶∞  Y 

   𝐵𝑉([𝑎, 𝑏] ; 𝐸) ≔ {𝑓: [𝑎, 𝑏] → 𝐸 | ‖𝑓‖
𝑣 < ∞} BND variation 

‖𝑓‖
𝑣 = 𝑠𝑢𝑝 ∑‖𝑓(𝑡𝑗) − 𝑓(𝑡𝑗−1)‖

𝐸
, sup over all partitions.  

  

   𝑆𝑡([𝑎, 𝑏]; 𝐸) ≔ {𝑓: [𝑎, 𝑏] → 𝐸 | ∃ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔  (𝑡𝑛
) 𝑜𝑓 [𝑎, 𝑏] 

          𝑠. 𝑡.    𝑓(𝑡) = 𝑥𝑛 𝑜𝑛 [𝑡𝑛−1, 𝑡𝑛]}  
 

𝐶∞ N 

   𝑅𝑒𝑔([𝑎, 𝑏] ; 𝐸) ≔  𝑆𝑡([𝑎, 𝑏]; 𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅  in ℬ([𝑎,𝑏] ; 𝐸) w.r.t ||. ||
∞ 𝐶∞ Y 

ℒ(𝐸; 𝐹) ∶=the space of bounded linear functions 
from E to F.  

OP, when F is Banach Y 𝐸′ ≔ ℒ(𝐸; 𝕂) the dual space to normed space 𝐸 OP by left 
side  

Y 

      

𝐻1 ∶= {𝑓 ∈ 𝐿2  | ∃𝑎 𝑤𝑒𝑎𝑘 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒  𝑓′} 
 

< 𝑓, 𝑔 >𝐻1  = < 𝑓, 𝑔 >𝐿2 +< 𝑓′ , 𝑔′ >𝐿2  
 

||𝑓||
𝐻1

= (||𝑓||
2

2
+ ||𝑓′ ||

2

2
)

1/2

 

 

Y  𝐿𝑐
𝑝

≔ {𝑓 ∈ 𝐿𝑝 ,   𝑓 ℎ𝑎𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 } 𝐶𝑝 Y 

𝐻0
1 ∶= 𝐻1 ∩ 𝐶0 

 

< 𝑓, 𝑔 >𝐻0
1  = < 𝑓′ , 𝑔′ >𝐿2 

 
 

 
||𝑓||

𝐻1  

OR 

||𝑓||
𝐻0

1 =  ||𝑓′ ||
2

 

 
Y  
 

Y  

   

𝐻𝑝 ∶= {𝑓 ∈ 𝐻1  |  𝑓′ ∈ 𝐻𝑝−1} 
 

< 𝑓, 𝑔 >𝐻𝑝  = Σ𝑘=0
𝑝

< 𝑓(𝑘) ,𝑔(𝑘) >𝐿2  

 

||𝑓||
𝐻𝑝

2
=  Σ ||𝑓 (𝑘) ||

2

2

 

 

Y    

𝐻0
2 =: 𝑑𝑜𝑚(Δ𝐷

) = 𝑑𝑜𝑚(𝐿) Same as above for p=2 

Note: closed subspace 
of 𝐻2(𝑎, 𝑏), therefore→ 

Y    
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Erik Leering  Operator Theory 

On scales, strong and weak norms 
𝑙1 ⊆ 𝑙2 ⊆ 𝑙∞ In fact all of these are strict. (ex 3.4) 

On finite dimensional (linear) spaces, all norms are equivalent (because they are all equivalent to the 

euclidean 2-norm on K^d, and there is an isometric isomorphism from E to K^d).  

 

𝐿∞(𝑎, 𝑏) ⊆ 𝐿𝑝 (𝑎, 𝑏) ⊆ 𝐿1(𝑎, 𝑏). All of these are proper inclusions.  

None of these hold if we replace intervals with 𝑅. 

Furthermore for 
1

𝑞
+

1

𝑝
= 1, ||𝑓||

1
≤ (𝑏 − 𝑎)

1

𝑞||𝑓||
𝑝
 and ||𝑓||

𝑝
≤ (𝑏 − 𝑎)

1

𝑝||𝑓||
∞

 

 

The whole finite-approximation of operator – spaces: 

𝒞00 ⊆ 𝒞0 ⊆ 𝒞 ⊆ ℒ(𝐸; 𝐹). 

Strong / weak norms 
A useful tool to determine densities of spaces in each other wrt certain norms is the idea of a strong 

vs weak norm, since a space being dense in another wrt a strong norm is also dense wrt a weaker 

norm.  

Def a norm is strong compared to weak when ||. ||𝑠 ≤ 𝑐||. ||𝑤 for some c.  

In the below, the constant is omitted.  

||𝑓||
1

≤ ||𝑓||
𝑝

≤ ||𝑓||
∞

 

‖𝐴[𝑘]‖
ℒ

≤ ‖𝐴[𝑘]‖𝐻𝑆
 𝑡ℎ𝑒 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 − 𝑆𝑐ℎ𝑚𝑖𝑑𝑡 𝑛𝑜𝑟𝑚 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 (𝑂𝑃 𝑡ℎ𝑒𝑜𝑟𝑦) 
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Erik Leering  Operator Theory 

Densities 
Note that 𝐴 is dense in Ω if  𝐴̅ = Ω, with 𝐴̅ 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 𝐴 ∶= {𝑥 ∈ Ω: ∃(𝑥𝑛) → 𝑥, 𝑥𝑛 ∈ 𝐴} 

Before we dive in, some useful density theorems: 

Approximation theorems 
TH. Dense in dense = dense:  𝐴, 𝐵 ⊆ (Ω, d) 𝑤𝑖𝑡ℎ 𝐴 ⊆ 𝐵̅ 𝑤𝑖𝑡ℎ 𝐴̅ = Ω, 𝑡ℎ𝑒𝑛 𝐵̅ = Ω 

TH. Dense = dense in a weaker norm: 

TH. Strong vs weak norms: 𝑂𝑛 (Ω, ||. ||𝑠)  𝑤𝑒 ℎ𝑎𝑣𝑒 ||𝑓 − 𝑓𝑛 ||
𝑠

→ 0, 𝑡ℎ𝑒𝑛  ||𝑓 − 𝑓𝑛||
𝑤

→ 0, 𝑡𝑜𝑜 

Cor:  𝐴 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 Ω 𝑤𝑟𝑡 ||. ||𝑠 → 𝐴 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 Ω 𝑤𝑟𝑡 ||. ||𝑤  

TH. Image of dense is dense in the image: 𝑇: 𝐸 → 𝐹 𝑙𝑖𝑛𝑒𝑎𝑟, 𝐴 ⊆ 𝐸 𝑑𝑒𝑛𝑠𝑒 , 𝑡ℎ𝑒𝑛 𝑇(𝐴) 𝑑𝑒𝑛𝑠𝑒  𝑖𝑛 𝑇(𝐸) 

Density table: 
Space 1 Is dense in space 2 Wrt norm (strongest) 

𝑐00 𝑙2 2 

𝑐00 𝑐0 inf 

𝑐00 𝑙𝑝 p 

   

Weierstrass   𝑃[𝑎, 𝑏] 𝐶[𝑎, 𝑏] sup 

Cor                  𝐶∞ 𝐶  sup 

   

𝐶0 𝐶  2 

𝐶0[𝑎, 𝑏] 𝐶[𝑎, 𝑏] p 

𝐶[𝑎, 𝑏] 𝐿𝑝 (𝑎, 𝑏) p 

𝐶0
1 𝐶0 Sup/inf 

𝐶0
1[𝑎, 𝑏] 𝐿𝑝 (𝑎, 𝑏) p 

𝐷 ≔ ⋃ 𝐶0
1[𝑎, 𝑏] , 𝑎 < 𝑏  

𝐿𝑝 (ℝ) p 

𝑃𝐿[𝑎, 𝑏] piecewise linear 𝐶[𝑎, 𝑏] inf 

𝐿𝑐
𝑝

(𝑅) compact support 𝐿𝑝 (𝑅) p (<inf) 

   

𝐶𝑐
∞(𝑎, 𝑏) 𝐶0[𝑎, 𝑏] Inf 

𝐶𝑐
∞(𝑎, 𝑏) 𝐿𝑝 (𝑎, 𝑏) p 

𝐶𝑐
∞(𝑅) 𝐿𝑝 (𝑅) p 

𝐿𝑐
𝑝

(𝑅) 𝐿𝑝 (𝑅) p 

   

Weierstrass 2.0  𝑠𝑝𝑎𝑛{𝑒2𝜋𝑖𝑛𝑠} 
trigonometric polynomials 

𝐶𝑝𝑒𝑟 [0,1] inf 

   

𝐶1[𝑎, 𝑏] 𝐻1(𝑎, 𝑏) H-1 

𝐶0
1[𝑎, 𝑏] 𝐻0

1(𝑎, 𝑏) H-01 

   

𝑆𝑡([𝑎, 𝑏]; 𝐸) 𝑅𝑒𝑔([𝑎, 𝑏]; 𝐸) inf 

Note: the “wrt norm” column might be abundant, since, given a normed space (𝐸, ‖. ‖𝐸), if a space is 

dense in this larger space, it will always be with respect to the norm ‖. ‖𝐸. Only when spaces allow 

for several norms, it is important, but usually it will be obvious. 

Densities 
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Erik Leering  Operator Theory 

Operators 
Note on spaces such as 𝐿𝑝  we naturally pair it with the p-norm.  

Operator name Space to space Definition Bounded/operator norm? 

Projection E->E inner product spaces 
 

Strictly speaking maps to F a 
subspace of E 

𝑃𝑓 ∶= ∑ < 𝑓, 𝑒𝑗 > 𝑒𝑗  

With (𝑒𝑗 ) ∈ 𝐸 an orthonormal 

system 

||𝑃𝑓|| ≤ ||𝑓|| 

Any operator 𝐾𝑑 → 𝐹 
From the fields with standard 
Euclidean norm to any normed 

space on 𝐾𝑑 

… Yes, CH 2.  

Any operator 𝐹 → 𝐸  with E fin dim … Yes, isom-isom K^d->E + above 

Shift operators, 
 

On 𝑙𝑝 → 𝑙𝑝 
 
 

 

Specifically 𝑙2 → 𝑙2 

(𝐿𝑓)(𝑛) = 𝑓(𝑛 + 1), 
(𝑅𝑓)(𝑛) = 𝑓(𝑛 − 1), 

Where left deletes the first entry 
and right adds a 0. 

Both with norm 1.  

Multiplication 

operator 

Given (𝜆𝑛) ∈ 𝑙∞,  

(𝐴𝜆𝑓) = (𝜆𝑛𝑓(𝑛)) 

Op norm is ||𝜆||∞ 

Multiplication 
continuous 

𝑇𝑚 : 𝐶 → 𝐾 Given 𝑚 ∈ 𝐶  

𝑇𝑚 𝑓 = ∫ 𝑚(𝑠)𝑓(𝑠) 

Op norm is ||𝑚||
1
 

𝑇𝑚 : 𝐶 → (𝐶, ∞) 𝐴𝑓 = 𝑚𝑓  ||𝑚||
∞

 

Integrator 𝐽: 𝐿1(𝑎, 𝑏) → (𝐶[𝑎, 𝑏], ∞) 
𝐽𝑓(𝑡) ≔  ∫ 𝟏[𝒂,𝒕]𝑓𝑑𝜆

𝑏

𝑎

 

=  ∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑎

 

1, 

||𝐽𝑓||
∞

< ||𝑓||
1
 

Laplace ℒ: 𝐿1(𝑅+) → 𝐿∞(𝐾) (ℒ𝑓)(𝑡) ≔ ∫ 𝑒−𝑡𝑠𝑓(𝑠)
0→∞

𝑑𝑠   1 

Fourier ℱ: 𝐿1(𝑅) → 𝐿∞(𝑅) 
ℱ𝑓(𝑡) ≔ ∫ 𝑒−𝑖𝑡𝑠 𝑓(𝑠)𝑑𝑠

∞

−∞

 
1 

    

Orthogonal 

projection 

𝑃𝐹 : 𝐻 → 𝐹  
H Hilbert, F a closed subspace 

*𝑃𝑓 ∶= ∑ < 𝑓, 𝑒𝑗 > 𝑒𝑗𝑗  

When ∃(𝑒𝑗 ) 𝑂𝑁𝑆 𝑖𝑛 𝐻  

𝑠. 𝑡.   𝐹 ≔ 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒𝑗 } 

1. Also: 

~, Parseval: 

||𝑃𝑓||
2

= ∑ | < 𝑓, 𝑒𝑗 > |2

𝑗

 

Derivative 𝐻1(𝑎, 𝑏) → 𝐿2(𝑎, 𝑏) 𝑓 → 𝑓′ Yes 

    

Dirichlet-
Laplacian 

Δ𝐷 : 𝐻0
2(𝑎, 𝑏) → 𝐿2(𝑎, 𝑏),  

As well as Δ𝐷
−1.  

Δ𝐷𝑢 ≔ 𝑢′′  
 

Yes 
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Operator theory 
 

Def Integral operator 

𝐹𝑜𝑟 𝑋, 𝑌 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠  𝑜𝑛 ℝ. 𝐴𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝐴 𝑖𝑠 𝑎𝑛 𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍 𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 𝑖𝑓 ∃𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑘: 𝑋 𝑥 𝑌 → 𝕂  such that (𝐴𝑓)(𝑡) = (𝐴[𝑘]𝑓)(𝑡) ≔ ∫ 𝑘(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠
𝑌

.  

Where we call k the kernel of the operator.  

Furthermore we define the following cross operator: 

(𝑓 ⊗ 𝑔)(𝑥, 𝑦) =  𝑓(𝑥)𝑔(𝑦) 

Where, if f and g are measurable, so is their product. This induces a norm on L(X x Y) as you would 

expect.  

 

Def 𝑇: 𝐸 → 𝐹 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑖𝑓 𝑇 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑇−1𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 . 

 

Def Hilbert-Schmidt kernel functions: 

For X, Y and k as before, with 𝑘 ∈ 𝐿2(𝑋 𝑥 𝑌), i.e., ∫ ∫ |𝑘(𝑥, 𝑦)|2𝑑𝑦𝑑𝑥 < ∞
𝑌𝑋

, 

We call 𝑘 a Hilbert-Schmidt kernel-function. 

Theorem then the induced HS-integral operator 𝐴[𝑘] satisfies 

‖𝐴[𝑘]𝑓‖
𝐿2

≤ ‖𝑘‖2(𝑋 𝑥 𝑌)‖𝑓‖2(𝑌)  

And, since 𝑘 is in essence bounded as a HS kernel, we have that the integral operator is bounded.  

Moreover: 𝑘 𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒𝑙𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝐴[𝑘]  (a.e.).  

Def HS-norm:  ‖𝐴[𝑘]‖
𝐻𝑆

≔ ‖𝑘‖2(𝑋 𝑥 𝑌) 

It basically takes the norm of the kernel to define the norm of the corresponding integral operator.  

 

Approximations of operators 
From the fact that 𝐹 𝐵𝑎𝑛𝑎𝑐ℎ → ℒ(𝐸; 𝐹)𝑖𝑠 𝐵𝑎𝑛𝑎𝑐ℎ , it follows that ‖𝑆𝑇‖ ≤ ‖𝑆‖‖𝑇‖. 

This allows for def Strong convergence is when (𝑇𝑛𝑓) → 𝑇𝑓  ∀𝑓 ∈ 𝐹, 𝑖𝑛 ‖. ‖𝐹 . 

Note that ‖𝑇𝑛𝑓 − 𝑇𝑓‖ ≤ ‖𝑇𝑛 − 𝑇‖‖𝑓‖ , hence convergence in the operator norm implies strong 

convergence. So in fact, strong convergence is weaker than convergence in the operator norm.  

It is in fact strictly weaker: the projection does converge strongly, 𝑃𝑛 ≔ ∑ <. , 𝑒𝑗 > 𝑒𝑗
𝑛
𝑗=1  has  

𝑃𝑛𝑓 → 𝑓 for each 𝑓 ∈ 𝐻. However, the operators never converge in the operator norm.   
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Defnitions we call 𝐴: 𝐸 → 𝐹: 

Name Corresponding space Definition 

Finite rank 𝐶00 dim 𝑟𝑎𝑛𝑔𝑒(𝐴) < ∞ 

Finitely approximable 𝐶0 ∃(𝐴𝑛 ) all finite rank: ‖𝐴 − 𝐴𝑛‖ → 0 

Compact 𝐶  (𝑓𝑛) 𝑏𝑛𝑑 𝑖𝑛 𝐸 → (𝐴𝑓𝑛) has a 
convergent subsequence.  

Examples/theorems:  

- HS integral operators are finitely approximable.  

- 𝐸, 𝐹 𝐵𝑎𝑛𝑎𝑐ℎ   𝑎𝑛𝑑  𝐴: 𝐸 → 𝐹 is finitely approximable → 𝐴 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 .  

- 𝐴 ∈ 𝒞0 → 𝐴𝐶, 𝐷𝐴 ∈ 𝒞0 for C,D just linear operators.  

- 𝐸, 𝐹 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 → 𝒞0(𝐸; 𝐹) = 𝒞(𝐸; 𝐹).  

Adjoints 
On Hilbert spaces,  𝐴∗ : 𝐹 → 𝐸 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑡𝑜 𝐴: 𝐸 → 𝐹 𝑏𝑛𝑑 𝑙𝑖𝑛𝑒𝑎𝑟, 

Is such that < 𝐴𝑓, 𝑔 > = < 𝑓, 𝐴∗𝑔 >. 

Construction of A*: 𝑙𝑒𝑡 𝑏 ∶ 𝐻 𝑥 𝐾 → 𝕂 𝑏𝑛𝑑. 𝑇ℎ𝑒𝑛 ∀𝑓 ∈ 𝐻, 𝑔 ∈ 𝐾, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡ℎ𝑎𝑡 

|𝑏(𝑓, 𝑔)| ≤ 𝑐‖𝑓‖‖𝑔‖, for some c. 𝑇ℎ𝑒𝑛 ∃! 𝑙𝑖𝑛. 𝑏𝑛𝑑. 𝐵: 𝐾 → 𝐻 𝑠. 𝑡.  𝑏(𝑓, 𝑔) = < 𝑓, 𝐵𝑔 >𝐻  ∀𝑓, 𝑔. 

Even: ‖𝐵‖ ≤ 𝑐. Then we can just take 𝑏(𝑓, 𝑔) = < 𝐴𝑓, 𝑔 > , and by using Riez-Fréchet: 

𝐴∗ = 𝐵, 𝑐 = ‖𝐴‖, 𝐴∗∗ = 𝐴,   𝑎𝑛𝑑 ‖𝐴‖ = ‖𝐴∗‖. 

Theorems: 

- A compact -> A* compact. 

- A finite rank has A* finite rank.  

 

Lemma:  𝐴 𝑙𝑖𝑛 𝑏𝑛𝑑, 𝑡ℎ𝑒𝑛 (ker(𝐴))⊥ =  𝑟𝑎𝑛̅̅ ̅̅ ̅(𝐴∗). So 𝐻 = 𝑟𝑎𝑛̅̅ ̅̅ ̅(𝐴∗ ) ⊕ ker (𝐴).  

This is especially nice for self-adjoint operators, which will be useful later.  

 

Theorem: Max-Milgram 

If we have: 

- 𝐻 𝐻𝑖𝑙𝑏𝑒𝑟𝑡, 𝑉 ⊆ 𝐻  𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒  𝑠. 𝑡.  (𝑉, <. , . >𝑉) 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , 

- ∃𝐶 ≥ 0  𝑠. 𝑡.  ‖𝑣‖𝐻 ≤ 𝐶‖𝑣‖𝑉, 

- ∃𝑎: 𝑉𝑥𝑉 → 𝕂 𝑠𝑒𝑠𝑞𝑢𝑖𝑙𝑖𝑛𝑒𝑎𝑟  𝑠. 𝑡.   

o 𝑎 𝑖𝑠 𝑏𝑛𝑑, |𝑎(𝑢, 𝑣)| ≤ 𝑐‖𝑢‖‖𝑣‖ 

o 𝑎 𝑖𝑠 𝑐𝑜𝑒𝑟𝑐𝑖𝑣𝑒, ∃𝛿 > 0  𝑠. 𝑡.  |𝑎(𝑢, 𝑣)| ≥ 𝛿‖𝑢‖𝑉
2 , 

Then ∀𝑓 ∈ 𝐻, ∃! 𝑢 ∈ 𝑉  𝑠. 𝑡.  𝑎(𝑢, 𝑣) = < 𝑓, 𝑣 >𝐻 , ∀𝑣 ∈ 𝑉. 

Even, 𝐴: 𝐻 → 𝑉 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦  𝐴𝑓 ≔ 𝑢  has norm ‖𝐴‖ ≤ 𝐶/𝛿 
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Approximate eigenvalues  
Def  𝑓𝑜𝑟 𝐴 ∈ ℒ(𝐸), 𝜆 ∈ ℂ  𝑖𝑠 𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒   𝜆̃  𝑖𝑓  ∃(𝑓𝑛) ∈ 𝐸  𝑠. 𝑡.   

‖𝑓𝑛‖ = 1,    &  ‖𝜆𝑓𝑛 − 𝐴𝑓𝑛‖ → 0.    

Here the sequence of functions can be understood as approximate eigenvectors.  

 

Lemma:  𝐿𝑒𝑡 𝐴 𝑏𝑒 𝑏𝑛𝑑 𝑜𝑛 𝐸 𝐵𝑎𝑛𝑎𝑐ℎ.  𝐼𝑓 (𝜎𝐼 − 𝐴) 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒, 𝑡ℎ𝑒𝑛 𝜎  𝑐𝑎𝑛𝑛𝑜𝑡  𝑏𝑒 𝑎𝑛 𝜆̃. 

Even, 𝑖𝑓  |𝜎| > ‖𝐴‖, 𝑡ℎ𝑒𝑛  𝜎𝐼 − 𝐴  𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒  (𝑎𝑛𝑑, 𝜎 𝑖𝑠 𝑛𝑜 𝑎𝑝𝑝𝑟𝑜𝑥 𝑒𝑖𝑔𝑣𝑎𝑙𝑢𝑒 ) 

Theorem: 

 𝐿𝑒𝑡 𝐴 ∈ ℒ(𝐸) 𝑓𝑜𝑟  𝐸 𝐵𝑎𝑛𝑎𝑐ℎ.  𝑇ℎ𝑒𝑛 𝑖𝑓 𝜆! = 0 𝑖𝑠 𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 ,

𝑡ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒.  

Furtermore,  dim ker(𝜆𝐼 − 𝐴) < ∞. 

 

Self-Adjoint:  A*=A.    THEN: 

- < 𝐴𝑓, 𝑓 >∈ ℝ 

- ‖𝐴‖ = |‖𝐴‖| ∶= sup {|< 𝐴𝑓, 𝑓 >|  𝑠. 𝑡.   ‖𝑓‖ = 1}. THEN 

- All eigenvalues of A are real. 

- All eigenvectors are orthogonal. 

- 𝐹 𝑎 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒  𝑜𝑓 𝐻  𝑠. 𝑡.  𝐴(𝐹) ⊆ 𝐹 →   𝐴(𝐹⊥ ) ⊆ 𝐹⊥,  i.e. ∀𝑓 ∈ 𝐹 ∶   𝐴𝑓 ∈ 𝐹 

- 𝑨 = 𝑨∗  𝒄𝒐𝒎𝒑𝒂𝒄𝒕 𝒐𝒏 𝑯, 𝒕𝒉𝒆𝒏 ∃𝝀 ∈ ℝ 𝒔. 𝒕.  ‖𝑨‖ = |𝝀|.  

Examples: orthogonal projections, multiplication op on 𝑙∞,  HS integral operators if 𝑘(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑘(𝑦, 𝑥) 

Theorem: SPECTRAL THEOREM:  𝐹𝑜𝑟  𝐴 = 𝐴∗ ∈ ℒ(𝐻) 𝑐𝑜𝑚𝑝𝑎𝑐𝑡.   

Then ∃(𝑒𝑛) with some indexing set  𝐽  such that : 

- (𝑒𝑛) 𝑖𝑠 𝑎𝑛  𝑂𝑁𝑆  

- ∃(𝜆𝑛) 𝑎𝑙𝑙  𝑖𝑛  ℝ/{0}  with 𝜆𝑛 → 0  (in case J = N),   s.t.: 

- ∀𝒙 ∈ 𝑯, 𝑨𝒙 = ∑𝝀𝒏 < 𝒙, 𝒆𝒏 > 𝒆𝒏.  Even: 𝑨𝒆𝒋 = 𝝀𝒆𝒋 

Uniform Boundedness 
𝑫𝒆𝒇: 𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛  𝒯 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑝′𝑠: 𝐸 → 𝐹  𝑖𝑠 𝒖𝒏𝒊𝒇𝒐𝒓𝒎𝒍𝒚 𝒃𝒐𝒖𝒏𝒅𝒆𝒅 𝑖𝑓 ∃𝑐 ≥ 0:  

‖𝑇𝑓‖ ≤ 𝑐‖𝑓‖, ∀𝑓 ∈ 𝐸, 𝑇 ∈ 𝒯.  

In other words, 𝒯 is uniformly bounded if each T is bounded and sup{‖𝑇‖} < ∞.  

Once can view 𝒯 ⊆ ℒ(𝐸; 𝐹) as a bounded subset.  

𝑫𝒆𝒇: 𝒯 𝑖𝑠 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  𝑏𝑛𝑑 𝑖𝑓 ‖𝑇𝑓‖ ≤ sup
𝑆∈𝒯

{‖𝑆‖} ‖𝑓‖.  

Theorem: 𝐸 𝐵𝑎𝑛𝑎𝑐ℎ , 𝐹 𝑛𝑜𝑟𝑚𝑒𝑑 →   𝒯 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦  𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑓𝑓 𝑖𝑡 𝑖𝑠 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  𝑏𝑛𝑑.  
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Important theorems 
 

General analysis – finite dimensional 
 

Projection and orthonormal system 

 

 

Bessel’s inequality 

 

Also extends to inf dim on Hilbert spaces. 

~Projection properties 

 

 

 

Cauchy-Schwarz 

 

For the proof the following is considered: 

 

For questions of the form 

||𝑓𝑔|| ≤ 𝑐||𝑓||, try to write to a form 

 |< 𝑓, 𝑔 >|2 ≤ ||𝑓||
2

||𝑔||
2
, i.e. C-S.  

 

Triangle inequalities 

||𝑓 + 𝑔|| ≤ ||𝑓|| + ||𝑔||, 

|||𝑓|| − ||𝑔||| ≤ ||𝑓 − 𝑔|| 

 

Lebesque and infinite dimensions 
On the Lebesque integral: Dominated convergence 

 

On the inf dimensional projection operator 

 

 

Riesz-Fréchet 

 

Decomposition of L^2 

 

Note that C1 is the space of constant functions. 

Gives as corollary the fundamental thm of calc: 
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Operator theory: 

 

 

Fubini 

 

Ez integration 

 

 

 

The above uses HS-operators from the operator summary. 

Lax-Milgram:  

 

Spectral Theorem 

 

In fact for 𝐴 = 𝐴∗ and the spectral thm we get that A 

is characterized somewhat by a projection: 

 

 

Baire: 

Lemma: 

𝐿𝑒𝑡  (Ω, 𝑑)𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , 𝐵𝑖 = 𝐵[𝑥𝑖 , 𝑟𝑖],

𝐵1 ⊇ 𝐵2 ⊇ 𝐵3 … 

Be a nested sequence of closed balls. 𝐼𝑓 𝑟𝑛 → 0,

𝑡ℎ𝑒𝑛  𝑥𝑛 → 𝑥  𝑒𝑥𝑖𝑠𝑡𝑠, 𝑎𝑛𝑑 ⋂ 𝐵𝑛 = {𝑥}𝑛 . 

 

Alternatively: 

1.  𝐼𝑓 ∃(𝑂𝑛) ⊆ Ω 𝑜𝑝𝑒𝑛  𝑠. 𝑡.  𝑂𝑛
̅̅̅̅ = Ω ∀𝑛 ∈ ℕ 

→ ⋂𝑂𝑛 ≠ 0. 

2.   𝐼𝑓 ∃𝑂𝑛 ⊆ Ω 𝑜𝑝𝑒𝑛  𝑠. 𝑡.   𝑂𝑛
̅̅̅̅ = Ω ∀𝑛 ∈ ℕ 

→  ⋂𝑂𝑛
̅̅ ̅̅ ̅̅ = Ω.  

Banach-Steinhaus 

 

OMP: 

 

Alternatively, T maps open subsets of E onto open 

subsets of F.  

𝐼𝑓 𝑇 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 

𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡  𝑎𝑙𝑠𝑜 ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑇−1 .  
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Approximate surjectivity: 

 

So approx. surjectivity implies surjectivity with an estimate 

of the pre-image.  

Closed graph theorem: 

Def 𝑇: 𝐸 → 𝐹 has a closed graph if  

𝑓𝑛 → 𝑓

𝑇𝑓𝑛 → 𝑔
} → 𝑇𝑓 = 𝑔 ∀(𝑓𝑛), 𝑓 ∈ 𝐸, 𝑔 ∈ 𝐹.  

In other words, if 𝑔𝑟𝑎𝑝ℎ(𝑇) ≔ {(𝑓, 𝑇𝑓)| 𝑓 ∈ 𝐸} is closed 

in the normed VS 𝐸 𝑥 𝐹.  

THM:  𝐸, 𝐹 𝐵𝑎𝑛𝑎𝑐ℎ, 𝑡ℎ𝑒𝑛 𝑇 𝑖𝑠 𝑏𝑛𝑑 𝑖𝑓𝑓   

𝑔𝑟𝑎𝑝ℎ(𝑇)  𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑  

 

Tietze: (not very enlightening) 

 

 

Uniquely determining a function based on… 

 

Moments, Fourier coefficients, etc.  

 

TH: In a complete metric space, every bounded sequence 

has a convergent subsequence, weakly.  

 

 

 

Duality theorems:  
Below I conclude with only stuff about duality CH16 

since it has to be somewhere, but not in a separate 

file. Dual def is in the spaces of note.  

Does E’ always exist (nonzero)? 

Often yes:  E fin dim, E’ same dim 

  E inner product space, E’=E. 

Idea: the dual may be rich enough to distinguish 

points in E based on evaluation with point in E’: 

∀𝑥 ≠ 𝑦 ∈ 𝐸, ∃𝜑 ∈ 𝐸′𝑠. 𝑡.  𝜑(𝑥) ≠ 𝜑(𝑦). 

Theorem 𝐻 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 → 𝐻′𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙𝑙𝑦  

𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖ℎ𝑐 𝑡𝑜 𝐻. Think of row/col vectors.  

Your best mates Riesz-Fréchet say then, as proof: 

ℎ, 𝑔 ∈ 𝐻, 𝑎𝑛𝑦 𝜑 ∈ 𝐻′~ <. , 𝑚 > 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ 𝐻. 

𝜑(ℎ) =< ℎ, 𝑚 >≠ 𝜑(𝑔)𝑖𝑓𝑓 < ℎ − 𝑔, 𝑚 >≠ 0 

 

General case: Hahn-Banach  

For (𝐸, ‖. ‖), 𝐸0 ⊆ 𝐸  &  𝜑0 ∈ 𝐸0
′ .  Then  

∃𝜑 ∈ 𝐸′  𝑠. 𝑡. 𝜑(𝑓) = 𝜑0(𝑓) ∀ 𝑓 ∈ 𝐸0 , 

& ‖𝜑‖𝐸′ = ‖𝜑‖𝐸0 ′.  

Cor: every Hilbert space H with countable basis is 

separable. 

Corollaries:  

- ∀𝑓 ∈ 𝐸, ∃ 𝜑 ∈ 𝐸′𝑠. 𝑡.  ‖𝜑‖ = 1 𝑎𝑛𝑑 |𝜑(𝑓)| = ‖𝑓‖. 

- ∀𝑓 ∈ 𝐸, ‖𝑓‖ = sup
‖𝜑‖=1

|𝜑(𝑓)| 

- ∀𝑓 ⊆ 𝐸, ℎ𝑎𝑣𝑒  𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅(𝐴) = 𝐸  𝑖𝑓𝑓  

∀𝜑 ∈ 𝐸′  𝑤𝑒 ℎ𝑎𝑣𝑒  𝜑|𝐴 = 0 → 𝜑 = 0 

If H is a Hilbert space then: 

- ∀𝑓 ∈ 𝐻 ∃‖𝑔‖ = 1 ∈ 𝐻 ∶ ‖𝑓‖ = | < 𝑓, 𝑔 > | 

- ‖𝑓‖ = sup
‖𝑔‖=1

| < 𝑓, 𝑔 > | obviously, 

- 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅(𝐴) = 𝐻  𝑖𝑓𝑓  ∀𝑔 ∈ 𝐻 ℎ𝑎𝑣𝑒 

< 𝑓, 𝑔 >= 0 ∀𝑓 ∈ 𝐴 → 𝑔 = 0. 

This last one can be restated as  

𝐴⊥ = {0} 𝑖𝑓𝑓  𝑔 ∈ 𝐻  𝑤𝑖𝑡ℎ  𝑔 ∈ 𝐴⊥ → 𝑔 = 0. Trivial. 

I cannot be bothered with the pf and the further 

corollaries.  
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Sobolev and Poisson 
*Note: this document and the one on operators are heavily linked. I want to keep the document on 

operators and spaces as general as possible. Therefore, this document implicitly draws results/facts 

from the others.  

𝑢′′ = −𝑓,   𝑢(𝑎) = 𝑢(𝑏) = 0 

To solve this, we need to move to Lebesque spaces and use the weak derivative: 

Def: weak derivative: 

𝑔 ∈ 𝐿2(𝑎, 𝑏) is said to be a weak derivative of 𝑓 ∈ 𝐿2(𝑎, 𝑏) if they satisfy 

∫ 𝑔𝜓𝑑𝑠 =  − ∫ 𝑓𝜓′𝑑𝑠
𝑏

𝑎

𝑏

𝑎
 holds for every test function 𝜓 ∈ 𝐶0

1[𝑎, 𝑏]. 

This can be rewritten as < 𝑔, 𝜓 > =  −< 𝑓, 𝜓′ > 

 

We call the space of all weakly differentiable functions 𝐻1(𝑎, 𝑏), the first order Sobolev space.  

 

Variational method for Poisson  
We could say that 𝑢 ∈ 𝐻2(𝑎, 𝑏) since we have a second derivative.  

Now rewrite Poisson to < 𝜓′ , 𝑢′ >𝐿2 = < 𝜓, 𝑓 >𝐿2 ,  𝜓 ∈ 𝐶0
1[𝑎, 𝑏]. 

We now constrain 𝑢 to be in the space 𝐻0
1, which is defined as you would expect, with norm  

||𝑢||
𝐻0

1 ≔ ||𝑢′||
𝐿2   

Then we rewrite the RHS by using 𝜑: 𝐻0
1(𝑎, 𝑏) → ℂ,    𝜑(𝑣) ≔ < 𝑣, 𝑓 >𝐿2  

Then Riesz-Fréchet yields a unique 𝑢 ∈ 𝐻0
1(𝑎, 𝑏) such that  

< 𝑣 ′, 𝑢′ >2=: < 𝑣, 𝑢 >𝐻0
1 = 𝜑(𝑣) = < 𝑣, 𝑓 >2 

For all 𝑣 ∈ 𝐻0
1(𝑎, 𝑏). In short, there is a 𝑢 s.t. < 𝑣 ′, 𝑢′ >2= < 𝑣, 𝑓 >2 , which holds for all 𝑣 ∈ 𝐻0

1 ⊃

𝐶0
1[𝑎, 𝑏], as required for our problem.  

 

Dirichlet-Laplacian & Hilbert-Schmidt 
Def: Dirichlet-Laplacian: Δ𝐷: 𝐻0

2(𝑎, 𝑏) → 𝐿2(𝑎, 𝑏),  Δ𝐷𝑢 ≔ 𝑢′′  

The importance of writing this as an operator is that there is an inverse operator Δ𝐷
−1 : 𝐿2 → 𝐻2 that 

turns out to be a HS (kernel) integral operator, which turns out to be bounded, which means that the 

Poisson problem is well-posed. This is because −Δ𝐷
−1 maps the problem to its unique solution.  
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Perturbations 
𝑢′′ − 𝑇𝑢 = −𝑓,  𝑢 ∈ 𝐻0

2(𝑎, 𝑏).  It turns out T ‘small enough’ is still well-posed.  

We use the property that (Δ𝐷 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑒𝑛) + (𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑤𝑒𝑙𝑙 − 𝑝𝑜𝑠𝑒𝑑) 

→  𝐼 − 𝑇Δ𝐷
−1 : 𝐿2 → 𝐿2  𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒.  

Note that we can rewrite this problem using the inverse Dirichlet as −𝑓 = (𝐼 − 𝑇Δ𝐷
−1)Δ𝐷𝑢. 

Lemma 

Now we can just look at conditions s.t. (𝐼 − 𝐴)𝑢 = 𝑓  has a unique solution, for 𝐴 ∈ ℒ(𝐸) a 

perturbation. Without too much work I note that 𝑖𝑓  𝑓 ∈ 𝐸 𝑖𝑠 𝑠. 𝑡.   𝑢 ≔ ∑𝐴𝑛𝑓  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑖𝑛 𝐸,

𝑡ℎ𝑒𝑛  𝑢 − 𝐴𝑢 = 𝑓. 

Theorem from the above, ∑‖𝐴𝑛‖ < ∞, →  (𝐼 − 𝐴) 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 

(𝐼 − 𝐴)−1 = ∑𝐴𝑛 ,  the Neumann series.  

 

Returning to our problem, the perturbation is still well-posed if ‖𝑇Δ𝐷
−1‖ < 1. 

Then in the book there is Volterra which I skip here. 

 

Using compact-self adjoint & Spectral theorem 
We can consider the general eigenvalue equation 𝐴𝑢 − 𝜆𝑢 = 𝑓 

Where 𝑓 ∈ 𝐻  𝐻𝑖𝑙𝑏𝑒𝑟𝑡, 𝜆 ∈ 𝕂, 𝐴 is compact self-adjoint. This is solvable under the following 

theorem (with (𝑒𝑗 ) from the spectral theorem): 

 

Let us consider then Δ𝐷𝑢 = −𝑓, with its solution −Δ𝐷
−1𝑓 = 𝐴𝑓 = ∫ 𝑔(. , 𝑠)𝑓(𝑠)𝑑𝑠 , 

𝑔(𝑠) the Green function. Note the following: 

- 𝐴 𝑖𝑠 𝑎 𝐻𝑆 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

- 𝑘 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑎𝑛𝑑 𝑟𝑒𝑎𝑙 − 𝑣𝑎𝑙𝑢𝑒𝑑, ℎ𝑒𝑛𝑐𝑒 𝐴 𝑖𝑠 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡  

- ker(𝐴) = {0} by construction.   

Hence: we can apply the spectral theorem if we can find the eigenvalues and eigenvectors of 𝐴. 
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So first, to determine the eigenvalues/eigenvectors: 

  

Where 𝑑𝑜𝑚(Δ𝐷) = 𝐻0
2(𝑎, 𝑏).  

 

By ez DE-theory we have 𝐴𝑢 = 𝜆𝑢, 𝜆 > 0 𝑖𝑓𝑓 

𝑢 = 𝛼 cos (
𝑡

√𝜆
) + 𝛽sin (𝑡/√𝜆). Now this solution can be further sharpened by the boundary 

conditions. In particular, letting 𝑎 = 0, 𝑏 = 1, 𝑢(0) = 0 → 𝛼 = 0.  

Then 𝑢(1) = 0, 𝛽 ≠ 0 → sin (
𝑡

√𝜆
) = 0    →      𝜆𝑛 =

1

𝑛2 𝜆2
, 𝑒𝑛 =

1

√2
sin (𝑛𝜋𝑡)  (normalized). 

 

Furthermore, A is injective to 𝐿2, so the system (𝑒𝑛) is an orthonormal basis for 𝐿2(0,1), and: 

 

Which converges by the theory in 𝐿2 but not necessarily pointwise. However it can be shown 

that it does in fact converge uniformly in t=[0,1]. Furthermore: 

  As an absolutely convergent series in 𝐶([0,1]𝑥[0,1]).  

 

 

Schrödinger operator & Strum Liouville equation  
Is just a perturbation of the Dirichlet-Laplacian with a multiplication operator: 

𝐿𝑢 =  −𝑢′′ + 𝑞𝑢  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑞 ∈ 𝐶[0,1] a positive continuous function, called the potential. Once 

again the domain is  𝑑𝑜𝑚(𝐿) = 𝐻0
2(0,1). We can consider the eigenvalues of L. 

𝐿𝑢 = 𝜆𝑢, 𝑡ℎ𝑒𝑛  𝑢 ∈ 𝐶2[0,1] 𝑎𝑛𝑑 𝑒𝑖𝑡ℎ𝑒𝑟  𝑢 = 0  𝑜𝑟 𝜆 < 0. In particular, 𝐿 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒  (1-1). 

Sturm-Liouville:  
𝐿𝑢 =  𝑓, is well-posed for 𝑓 ∈ 𝐿2(0,1), i.e., 𝐿: 𝐻0

1 → 𝐿2 is bijective with bounded inverse. To this end, 

we define the new inner product 𝑎(𝑢, 𝑣) ≔< 𝑢′ , 𝑣 ′ >2 +< 𝑞𝑢, 𝑣 >2 . The induced norm is 

equivalent to the usual norm on 𝐻0
1 ,    𝑎𝑛𝑑 (𝐻0

1 , ‖. ‖𝑎) is a Hilbert space. Then the mapping  

𝑣 ↦< 𝑣, 𝑓 >2   is bounded, and by Riesz-Fréchet ∃! 𝑢 ∈ 𝐻0
1   𝑠. 𝑡.   𝑎(𝑢, 𝑣) = < 𝑓, 𝑣 > ∀𝑣 ∈ 𝐻0

1.  

For 𝑣 ∈ 𝐶0
1 , 𝑡ℎ𝑒𝑛, 𝑢 ∈ 𝐻0

2 , 𝑎𝑛𝑑  𝐿𝑢 = 𝑓, 𝑎𝑛𝑑 𝐿 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒. It can also be shown that 𝐿−1  is bnd.  

In the book they show 𝐿−1  can be found (as a HS-integral operator) but that is cumbersome and 

skipped.  
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Fourier analysis 
 

From Chapter 1: 

 

With 𝑒𝑛(𝑡) = 𝑒2𝑛𝜋𝑖𝑡  

 

This can be extended after Lebesque and Hilbert to inf dim: 

 

 

 

 

For more on Fourier, see the appendix.  

 

  

Need the Dirichlet kernel: 

Then some stuff and some more 

stuff with which I can’t be bothered 

and then ‖𝑇𝑛‖ is the harmonic 

series which diverges. 

Fourier Analysis 


