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Introductory note

The central topics of AFA to my understanding are that of completeness of a certain normed space
and boundedness of operators.

Completeness is of central importance because of the nice properties that follow from it. To this end
we even go as far as to define a new integral using the techniques of Lebesque. In particular, Hilbert
spaces have nice properties. From CHS, letting H be a Hilbert space:

- F © H aclosed linear subspace — 3! P f € F a best approximation of f € H.

- Riesz — Fréchet: each functional ¢ € L(H; K) can uniquely be described by one element
geH: o(f)=<f,g>y VfE€EH.

- Other theorems such as Parseval, Bessel & Parseval’s identity hold on Hilbert spaces.

- By the appendix F, every Hilbert space contains a (possibly uncountable) maximal ONS.
Such a maximal ONS ~ ONB, nearly fully describes the Hilbert space (CH 8 properties).
If the Hilbert space is separable, then every orthonormal system in it is at most countable!

On completeness & Completion

Incompleteness of a metric space is not a substantial problem, because every
metric space can be viewed as a dense subset of a complete metric space.
Such a “surrounding” space is called a completion, and it can be con-
structed by the same methods that Cantor' and Heine? used to construct
the real numbers from the rationals; see Appendix B. For normed spaces
there is a more explicit construction (Corollary 16.11).

Corollary 16.11. Ewvery normed space is isometrically isomorphic to a
dense subspace of a Banach space.

Proof. By Theorem 11.8 each dual space is complete. i.e., a Banach space.
The linear isometry j : E — E” then maps E to the subspace j(E) of the

Banach space E”, and hence j(F) is a Banach space which has j(F) as a
dense subspace. mi

| strongly recommend having at least a look at Appendix B to find some intuition on this idea. It
would have been nice if this material was included formally as it does give some good insight about
the nature of “completeness” (or rather, the absence of it).

Bounded linear mappings/operators

Are relevant for their convenient properties as well, many of which are obvious. Riesz-Fréchet only
works on bounded linear mappings. Many of the useful operators that we encounter (of which many
are listed in this summary), are bounded. Boundedness plays an essential role in solving certain
differential equations (chapters 10-11). For such operators, we can speak of (approximate)
eigenvalues. The spectral theorem and its consequences apply to special bounded operators.

Also, the uniform boundedness principle and the open mapping theorem concern bounded
operators. This should convince you of their usefulness.
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Afa Definitions

Space structure Complete name
(Q,<.,.>)inner pr | Hilbert

(Q,]].11) Normed Banach
(Q,d(.,.)) metric Complete

Structural properties

Inner product:

Definition 1.2. Let E be a vector space. A mapping
ExE—EK, (fg)—{fg
is called an inner product or a scalar product if it is sesquilinear:
(Af +pg, h) = A(f.h) +p (g, h),

(hAf+ug) =X ) +Elhg)  (fo.he B Auek),

symmetrie:

(frgy=1(a./) (J.g€E),
positive:
(f.fi=z0 (fek),
and definite:
Ff) =0 — f=0  (feE).
Norm:

Definition 2.5. Let E be a vector space over the field K € {R,C}.
mapping

H:E— R,
is called a norm on E if it has the following properties:
1) ||fl=0 <« f=0 forall fe E (definiteness)
2) ||Afll = |ALlIf]] forall fe E,AcK (homogeneity)

3) |[f+gll S |fll+lgl] foral f.ge E (triangle inequality

Operator definitions, for T
Bounded 3¢ > 0 s.t. ||Tf]| < c|If]| vf €E.

Operator norm ||T|| = sup|ig|<1 TSI

Finite rank(T) := dim(range(T)) < oo

Finitely approximable if 3(T;,) € L(E; F) all
of finite rank such that ||T,, — T|| - 0.

Compact operator (f,,) bounded in E —
(Tf,,) < F has a convergent subsequence.

Erik Leering

Many quick/specific definitions are dropped in this page. For
definition of certain spaces continue below.

Definitions

CENTRAL: Complete: every Cauchy sequences
converges to an element in the space.

(f,) is Cauchy if ve > 0,IN € N s.t. n,m >
N = |lfy = full <e.

Opensetif 0: Vx € 0 3e > 0: B(x,€) € 0.

Closed setA = A S Q
ifx, €A s.t. x,>x€0>x, > x €A

Closure A:={x€ Q|3x, €A s.t. x, > x}

Compact (,d) is when every sequence in
the set has a convergent subsequence.

Compact support: when a function f vanishes
outside a finite interval (a,b).

Convex: f,g € A,t € [0,1]
>tf+(1—-t)geA

Ais Lebesque Measure is 1*(A) := infX|Q,|
with @, a sequence of intervals that cover A.
If the Lebesque measure is finite, the set is
Lebesque measurable.

f € Ais Lebesque measurable if
{teA|la<f(t)<b}eZIVabe€eR.

Isometry: ||Tf||F = ||f||E Vf.
Always 1-1, if also onto, then isometric
isomorphism.

A normed space is seperable if 34 C E
countable s.t. span(A) = E.

e.g. 12(N)is seperable with A = {e,}.
[® is not.
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Spaces of note

For below: | made this to be read left to right, to highlight symmetries. Does not mean everything placed next to each other has symmetry, but you will see the places where it
obviously does have symmetry.

1
Norms: D, = discrete p-norm (Zlx, [P)V?, C, = integral p-norm, (f IfI?ds) ", op=|ITl| = “ifﬂf Tf1|
=1
Space Norm Space Norm
c={x, ) Klx,»x€eK} Y C(E; F) =={A € L(E;F) | A is a compact operator} op
Dp-1p0 Y
co :={(x,) %, - 0} Y Co(E; F) ={4 € L(E;F) | A is finitely approximable} oP
oo = tx,) | x,, = 0, eventually} Dyeipo N Coo(E;F) =={A € L(E; F) | A has finite rank} op
N
N
B(Q) == all bounded functions on Q C, N
Note not necessarily continuous. However, this Cp N
kind of proves completeness for the ones below, Co Y
due to closedness of them.
C := the set of continuous functions C, N
C?! :=the set of once cont. diff. functions. Cp N
C,:=1f € BQ) | fis continuous} Co Y

Co:=1{f cont | fla) = f(b) = 0}
Or continuous functions with compact support.

Cper :=1{f cont | £(0) = F(1)}

Cl:=CyncC? Cy N (For below: let X be any interval, and) -
Cp N X (€ P(R)):=the set of all Lebesque-measurable sets
Ce N Is the set on which we restrict ourselves.

M) :={f:X > K | f is Lebesque — Measurable} - -
L= {f e MX) : |Ifl], < oo}

1= {Ge) | Blxy | < o0} D, Y L, := L*/~A with equivalence relation for almost everywhere C, Y
1, :={(x,) | Glx, 2% < 00} D, Y L, =" C, Y
1= (Gr,) 1l )77 < o) D, Y[ L,=" c, |V
lo = {(x,) Isuplx,| < oo} D, Y Ly, =" with||f||Lm =inflc >0 | Ifl <¢c, a.e.} Coo Y
BV ([a,bl;E) = {f:[a,b]l > E | lIfll, < 00} BND variation
lfll, = supZ”f(tj) - f(tj_l)  Sup over all partitions.
St(la bl; E) = {f:la, bl - E | 3 partitioning (t,) of la, bl Co N
sit. f©) = x,on[t,_y,t,]}
Reg(la,bl;E) = St(la,bl; E) in B(la,bl; E) wrt ||. ||y Co
L(E;F) :=the space of bounded linear functions OP, when F is Banach Y E' == L(E; K) the dual space to normed space E OP by left | Y
from Eto F. side
H':={f € L? | Jaweak derivative f'} 171 |H1 Y LY = {f € LP, f has compact support} Cp Y
2 112\ 72
<f.g>n=<f.g>2+<f.g >z =(||f||2+||f||2)
HI:=H'nC,
lIf11,5a Y
<f.g >H3:<f,'.9, >p2 OR
, Y
It = 111,
HP :={f eH' | f e HP™! 2 2 |y
fem 1 f J 71l = [lr ],
<f,g>yr = ZII()ZO < f(k)r.g(k) >p2
HZ =:dom(Ap) = dom(L) Same as above for p=2 | Y
Note: closed subspace
of H?(a, b), therefore—
Baire theorem consequences:
THM: A normed space with a countable algebraic basis is never complete. Note that countable implies infinite elements.
So in this context, R? is complete, since it has a finite, nut a countable, basis.
Page | 1
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On scales, strong and weak norms

[ c1?c 1™ Infactall of these are strict. (ex 3.4)

On finite dimensional (linear) spaces, all norms are equivalent (because they are all equivalent to the
euclidean 2-norm on K”d, and there is an isometric isomorphism from E to KAd).

L®(a,b) € LP(a,b) S L' (a, b). All of these are proper inclusions.
None of these hold if we replace intervals with R.

1 1
Furthermore for§+%= 1, ||f||1 < (b—a)5||f||pand ||f||p < (b—a)5||f||Oo

The whole finite-approximation of operator — spaces:
Coo ECyECC L(E;F).

Strong / weak norms

A useful tool to determine densities of spaces in each other wrt certain norms is the idea of a strong
vs weak norm, since a space being dense in another wrt a strong norm is also dense wrt a weaker
norm.

Def a norm is strong compared to weak when ||.||S < c||. ||, for some c.

In the below, the constant is omitted.
i1l < liftl, < il

| Ape) ||L < ||A[k]||HS the Hilbert — Schmidt norm for integral operators (OP theory)
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Densities

Note that A is dense in Qif A = Q, with A the closure of A := {x € Q:3(x,,) = x,x, € A}

Before we dive in, some useful density theorems:

Approximation theorems

TH. Dense in dense =dense:  A,B € (Q,d) with A € B with A = Q,then B = Q

TH. Dense = dense in a weaker norm:
TH. Strong vs weak norms: On (Q, ||.|ls) we have ||f —nt|5 — 0, then ||f — fn||w - 0,too
Cor: AdenseinQwrt||.||lg » Adense in Qwrt||.||,

TH. Image of dense is dense in the image: T: E — F linear, A € E dense, then T(A) dense inT (E)

Density table:

Space 1 Is dense in space 2 Wrt norm (strongest)
Coo 12 2
Coo Co inf
oo A p
Weierstrass P[a, b] Cla, b] sup
Cor c” C sup
Co C 2
Cola, b] Cla, b] p
Cla, b] LP(a, b) P
Cq Co Sup/inf
Cila, b] LP(a,b) p
p
D:=ch[a,b],a<b LF(R) P
PL[a,b] piecewise linear Cla, b] inf
LP(R) compact support LP(R) p (<inf)
C(a,b) Cola, b] Inf
Cc°(a,b) L? (a, b) P
Cc°(R) LP (R) p
LP(R) LP(R) p
Weierstrass 2.0 span{e?™"} Cper[0,1] inf
trigonometric polynomials
C'[a, b] H(a, b) H-1
C4 [a, b] Hi(a,b) H-01
St([a,b]; E) Reg([a, b]; E) inf

Note: the “wrt norm” column might be abundant, since, given a normed space (E, ||. ||g), if a space is
dense in this larger space, it will always be with respect to the norm ||. ||z. Only when spaces allow
for several norms, it is important, but usually it will be obvious.
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Operators

Note on spaces such as LP we naturally pair it with the p-norm.

Operator name

Space to space

Definition

Bounded/operator norm?

Projection

E->E inner product spaces

Strictly speaking maps toF a
subspace of E

Pf :=Z <f.eg>e¢
With (e;) € E an orthonormal
system

[IPFI] < 1IF1I

Any operator

K¢>F
From the fields with standard
Euclidean norm to any normed
space on K¢

Yes, CH 2.

Any operator

F — E with E fin dim

Yes, isom-isom KAd->E + above

Shift operators,

OnlP - [P

(LM =f(n+1),

(Rf)(m) = f(n—1),
Where left deletes the first entry
and right adds a 0.

Both with norm 1.

Multiplication Specifically [2 — 12 Given (1,) € [, Op norm is |||
operator (A1) = Anf ()
Multiplication T,:C > K Givenm € C Op norm is ||m||1
continuous Tnf =] m(8)f(s)
T,p:C = (C,) Af = mf |lml|,,
Integrator J:L'(a,b) - (Cla,b], ) b L
@ = f Laafda sl < liril,
t
= f f(x)dx
a
Laplace LR, - L7 (K) EOO = Jpne Cf()ds |1
Fourier F:L*(R) » L®(R ® 1
(®) (&) Ff(t) = -f e 'S f(s)ds
Orthogonal Pe:H—>F *Pf:=2;i<f,e>e¢ 1. Also:
projection H Hilbert, F a closed subspace When H(ej) ONS in H ~, Parseval:
s.t. F :=7Span{es} ||Pf||2=z:|<f,ej>|2
j
Derivative H'(a,b) - L*(a,b) f-f Yes
Dirichlet- Ap:HZ(a,b) - L*(a, b), Apu = u" Yes
Laplacian As well as Ay,

Erik Leering

Operator Theory
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Operator theory

Def Integral operator

For X,Y intervals on R. An operator A is an integral operator if 3 function
k:X xY = K such that (Af)(t) = (A f)(®) = J, k(t,s)f (s)ds.
Where we call k the kernel of the operator.

Furthermore we define the following cross operator:

Y9,y = f(x)g®)

Where, if f and g are measurable, so is their product. This induces a norm on L(X x Y) as you would
expect.

Def T:E — F is invertible if T is bijective and T~ lis bounded.

Def Hilbert-Schmidt kernel functions:
For X, Y and k as before, with k € L*(X x Y), i.e., [, [, 1k(x,¥)|?dydx < oo,
We call k a Hilbert-Schmidt kernel-function.

Theorem then the induced HS-integral operator A[k] satisfies
”A[k]f”L2 < Ilkllax Y)”f”z(y)

And, since k is in essence bounded as a HS kernel, we have that the integral operator is bounded.

Moreover: k is uniquely determined by Ay (a.e.).
Def Hs-norm: [y [,,s = lkllzgxxv)

It basically takes the norm of the kernel to define the norm of the corresponding integral operator.

Approximations of operators

From the fact that F Banach — L(E; F)is Banach, it follows that ||ST|| < ||S|||IT]I-
This allows for def Strong convergence is when (T,,f) - Tf Vf € F,in||.||f.

Note that ||T,,f — TfIl < |IT,, — TI|lIf|l , hence convergence in the operator norm implies strong
convergence. So in fact, strong convergence is weaker than convergence in the operator norm.

Itis in fact strictly weaker: the projection does converge strongly, B, = Z;'l=1 <., > ¢ has

B,f — f for each f € H. However, the operators never converge in the operator norm.
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Defnitions we call A:E - F:

Name Corresponding space | Definition

Finite rank Coo dim range (4) < oo

Finitely approximable Co 3(A,,) all finite rank: ||A — A, |l > 0

Compact C (f,) bnd in E - (Af;,) has a
convergent subsequence.

Examples/theorems:

- HS integral operators are finitely approximable.

- E,F Banach and A:E - F is finitely approximable — A is compact.
-A€eC,— AC,DA € C for C,D just linear operators.

-E,F Hilbert —» Cy(E; F) = C(E;F).

Adjoints

On Hilbert spaces, A*:F = E adjoint to A:E — F bnd linear,

Issuchthat < Af,g>=<f,A"g >.

Construction of A*: letb : Hx K - Kbnd.ThenVf € H, g € K,we have that

Ib(f, g)| < cllfIlllgll, for some c. Then 3! lin.bnd.B: K —» H s.t. b(f,g) =< f,Bg >y Vf,g.

Even: ||B|| < c¢. Then we can just take b(f, g) = < Af, g >, and by using Riez-Fréchet:
A*=B,c=All, A" =4, and ||lAll = |l4"]|l.

Theorems:

- A compact -> A* compact.
- Afinite rank has A* finite rank.

Lemma: A lin bnd, then (ker(A))* = ran(4). So H = 7an(4*) @ ker (4).
This is especially nice for self-adjoint operators, which will be useful later.

Theorem: Max-Milgram
If we have:

- H Hilbert,V € H a linear subspace s.t. (V,<.,.>}) is also complete,
- 3C =0 s.t. ||vlly < Clivily,
- Ja:VxV - Ksesquilinear s.t.
o aisbnd,|a(u,v)| < c|ull||v||
o aiscoercive,35 > 0 s.t. |a(u,v)| = &|lullZ,
ThenVf e H,Alu eV s.t. alu,v) =< f,v>y, VveV.

Even, A: H - V defined by Af :=u has norm ||A]| <C/6
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Approximate eigenvalues
Def for A € L(E), A € C is an approximate eigenvalue 1 if 3(f,) €E s.t.

Ifall =1, & lAfy, — Afpll = 0.
Here the sequence of functions can be understood as approximate eigenvectors.

Lemma: Let A be bnd on E Banach. If (ol — A) is invertible, then o cannot be an 1.
Even, if |a| > ||All, then ol — A isinvertible (and, o isno approx eigvalue)

Theorem:
Let A € L(E) for E Banach. Then if A! =0 is an approx eigenvalue,
then it is an eigenvalue.

Furtermore, dim ker(Al — 4) < oo.

Self-Adjoint: A*=A. THEN:
-<Af,f >eR
-lIAl = Al := sup {I< Af, f >| s.¢. |IfIl=1}.  THEN

- All eigenvalues of A are real.

- All eigenvectors are orthogonal.

- Fasubspace of H s.t. A(F) S F > A(Ft)CF' ie.VfEF: Af€F
- A= A" compact on H, then3A € Rs.t. ||A]l = |4].

Examples: orthogonal projections, multiplication op on [, HS integral operators if k(x,y) = k(y, x)

Theorem: SPECTRAL THEOREM: For A = A* € L(H) compact.
Then 3 (e, ) with some indexing set ] such that :

(e,) isan ONS
- 34, all in R/{0} with A, > 0 (incaseJ=N), s.t.
- Vx€ H Ax = Y4, < x,e, > e,. Even: Ae; = Ae;

Uniform Boundedness

Def:a collection T of linear op's:E — F is uniformly bounded if 3c > 0:
ITFl < cllfll, Vf €ETET.

In other words, T is uniformly bounded if each T is bounded and sup{||T||} < o.
Once can view I € L(E; F) as a bounded subset.

Def:T is pointwise bnd if ||Tf|| < sup{lISI}If]l-
seT

Theorem: E Banach,F normed — T isuniformly bounded iff itis pointwise bnd.

Theorem 15.6 (Banach Steinhaus?). Let E, F be Banach spaces, and let
(Th)ners C L(E; F) be a sequence such that

Tf:= lim T,f

n—0C

exists for every f € E. Then 1 is a bounded operator, (1},)nen is uniformly
bounded, and
|7|| < liminf ||T5] .
n—00

Erik Leering Operator Theory
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Triangle inequalities

Important theorems

If +gll < [if1]+[1g1l,

A1 =ligll < 11F =gl
General analysis — finite dimensional

Lebesque and infinite dimensions

On the Lebesque integral: Dominated convergence

Projection and orthonormal system

Lemma 1.10. Let (E, (-,-)) be an inner product space with associated norm
[[]l, and let eq, ..., en € B be a finite orthonormal system.

a) Let g=37% Ay (with M., An € K)  be any linear combina- Theorem 7.16 (Dominated Convergence Theorem). Let (fn)nen be a se-

tion of the c;. Then quence in 11 (X) such that [ = lim,_, fn exists pointwise almost every-
n where. If there is 0 < g € LN X) such that |fu| < g almost everywhere, for
Loy = Aj(ej.en) = Mg k=1,.... - 1/ v . . _
e =3 Nl =X ") cach n € N, then f € INX), |[fu— fll; = 0 and

and ol =327 Wl = 307 el
[ FadA = / Jdn.
JX JX

b) ForfeBlet Pfi=3 " (fie;)e;. Then
i=
f—Pf Lspan{er,....en}t and | PfI|<|If]- On the inf dimensional projection operator

Theorem 8.8. Let ' be a closed subspace of a Hilbert space H. Then the

Bessel’s inequalit
q y orthogonal projection Pp has the following properties:

Combining a) and b) of Lemma 1.10 one obtains Bessel’s inequality® a) Prfel and f—Ppf L F foralfeH.
(1.1) 2?21 (e = 1P < /)P (f € ). b) PrfeF and ||f—Prf|=d(f.F) forall fecH.
¢) Pp:H — H is a bounded linear mapping satisfying (Pr)? = Pr and
Also extends to inf dim on Hilbert spaces. IPefI< /1 (f € H).
In particular, either F'= {0} or ||Pr|| = 1.
~Projection properties d) ran(Pr)=F and ker(Pp) = FL.

Exercise 1.8. Let {eq,..., e, } be a finite orthonormal system in an inner product e) I—Pp = Pp., the orthogonal projection onto F'=.
space (E, (-,-)), let F' := span{ey,..., en} and let P : E — F be the orthogonal
projection onto F. Show that the following assertions hold:
a) PPf=Pfforal fek.
b) If f,g € E are such that g € F and f — g L F, then g = Pf.
c) Each f € E has a unique representation as a sum f = u+v, where u € F' and RIeSZ-FreChet
veFL (Infact, u=Pf.)

Theorem 8.12 (Riesz-Fréchet!). Let H be a Hilbert space and let v : H —

d) If f € Eis such that f L F*, then f € F. (Put differently: (F+)* = F.) K be a bounded linear functional on H. Then there exists a unique g € H
e) Let Qf := f—Pf. f € E. Show that QQf = Qf and |Qf] < |f| for all such that
fekE.

o(f)={f.g)  forall feH.

Decomposition of LA2
Cauchy-Schwarz

Lemma 10.5. The space [(a.b) de composes orthogonally into

Theorem 2.1 (Cauchy-Schwarz Inequality’2). Let (E, (-,-)) be an inner 12(a.b) = Cl & T | & € Clla. bt
product space with associated norm || f|| :=+/{f.f) for f € E. Then (a,b) = C1 @ {¢' | ¥ € Cgla, b},
[E o) < I FI gl (f.ge B). with ||-||,-closure on the right-hand side.

with equality if and only if [ and g are linearly dependent.
Note that C1 is the space of constant functions.

For the proof the following is considered: Gives as corollary the fundamental thm of calc:
g
P:E — span{g}, Pf:= ) ’;) g Corollary 10.7. One has H'(a,b) C Cla,b]. More precisely, f € H'(a,b) if
llgll and only if f has a representation
. f=Jdg+cl
For questions of the form
a with g € 1*(a,b) and ¢ € K. Such a representation is unique, namely
. _ _(f=-Jdf)
||fg|| < c||f1], try to write to a form g={f" and c=-7—t.
2 Moreover, the fundamental theorem of calculus holds, i.e.,

1< f.g>12 < lIFI* g1, ie. Cos.

d
f f'(s)ds = f(d) — f(c) for every interval [e,d] C [a,b].
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Operator theory:

Theorem 11.2. Let 1 < p < oo. If f € IP(X) and g € IP(Y), then
foge (X xY) with |f ® gllyx.vy = 1flmex) 190wy, Moreover, the
space

span{f®@g | felP(X), gelr(Y)}
is dense in IP(X x Y).

Fubini

The integral of an integrable function f € LI(X x V) with respect to
two-dimensional Lebesgue measure is computed via iterated integration in
either order:

Cda? =
Xxyf(-)dA /Xfyf(r.y)dydr_

This is called Fubini’s theorem® and it includes the statement that if one
integrates out just one variable, the function

v [ty

is again measurable
Ez integration

Lemma 11.3. Let f € INa,b) and n € N. Then

o= *f(s)d i b
( f)tt)fmfu(tfs) f(s)ds forallt e [a,b)

In particular, J is again an integral operator, with kernel function

1 —
Lpgls)(t— s

kn(t, ) = Gy

(s,t € la,b]).

Proof. This is proved by induction and Fubini’s theorem.

Example 11.9 (Integration Operator). The n-th power of the integration
operator .J on E = Cla, b] is induced by the integral kernel

t_ gt
= 1{51”“"5){(”%)1)!'

=

/n!

F(t, )

From this it follows that ||J"(| ;) # 1" = || J||". (See Exercise 11.7.)

The above uses HS-operators from the operator summary.

Lax-Milgram:

Let a: V x V — K be a sesquilinear mapping with the following prop-
erties:
1) ais bounded, ic.. there is ¢ > 0 such that
(12.6) la(u,v)| <clluly oy (wveV).
2) ais coercive, ie., there is § > 0 such that

— ;
la(u. u)| = o [u]| (weV).
(The number § is called the coercivity constant.)

Then we have the following theorem

Theorem 12.13 (Lax-Milgram®®). In the situation described above, for
each f € H there is a unique u €V such that

a(u,v) = (f,v)y forallveV
Moreover, the operator A : H — V' defined by Af = u has norm || A|| < C/4.

Spectral Theorem

In fact for A = A* and the spectral thm we get that A
is characterized somewhat by a projection:
Let us denote by .J the index set for the orthonormal system in the spectral
theorem. So J ={1,....] N} or J = N. Moreover, let
Py: H — ker(A)

be the orthogonal projection onto the kernel of A and P,
complementary projection. Then we can write

Af=0-Pof + ZM i (f.e5) €

for all f € H. This formula is called the spectral decomposition of A.

=1- P its

Corollary 13.12. Let A be as in the spectral theorem (Theorem 13.11).
Then the following assertions hold.

a) Tan(A)=span{e; | j€J} and ker(d)={e; |je J} .
b) Pf= Zﬁj (f.ej)e; forall feH.

c) Ewvery nonzero eigenvalue of A occurs in the sequence (A;)jcy. and its
geometric multiplicity is

dimker(Al — A) = card{j € J | A = A;} < o0.

Baire:
Lemma:

Let (Q,d)be complete, B; = Blx;, 1],
B, 2B, 2B; ...
Be a nested sequence of closed balls. If r,, = 0,
then x, = x exists, and N, B, = {x}.

Theorem 15.1 (Baire). Let (£2,d) be a nonempty complete metric space
and let (An)nen be a sequence of closed subsets of §2 such that

2=J A

Then there is n € N and x € 2,1 > 0 with B(x.r) C A,.

Alternatively:

1. If 3(0,) < Qopen s.t. 0, =QVneN
- NOo, # 0.
2. If 30, € Qopen s.t. 0, =QVn€eN
- No, = Q.

Banach-Steinhaus

Theorem 15.6 (Banach-Steinhaus?). Let E.F be Banach spaces, and let
(To)nen € L(E; F) be a sequenee such that

Tf:= lm T,f
n—oo

exists for every f € E. Then T is a bounded operator, (1,,)nen is uniformly
bounded, and

|7 < liminf |75 .
n—oc

OMP:

Theorem 15.8 (Open Mapping Theorem). Let E. F' be Banach spaces and
let T : E — F be a bounded linear mapping which is surjective. Then there
is a > 0 such that for each g € F there is f € E with ||f|| £ a||g|| and
Tf=g.

Theorem 13.11 (Spectral Theorem). Let A be o compact self-adjoint op-
erator on a Hilbert space H. Then A is of the form

(13.1) Af=3 Alfeiles  (feH)

for some (finite or countably infinite) orthonormal system (e;); and real
numbers A; # 0 satisfying lim; . A; = 0. Moreover, Ae; = Ae; for each j.

Alternatively, T maps open subsets of E onto open

subsets of F.

If T is invertible then the inverse is bounded and the
statement also holds for T™1.

More precisely, the orthonormal system is either (e_,)_?\:1 for some N € N
or (e;)jen. Of course, the condition lim; ,o, A; = 0 is only meaningful in
the second case.
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Approximate surjectivity:

Theorem 15.11. Let E, F' be Banach spaces, and let T € L(E; F'). Suppose
that there exist 0 < g < 1 and a > 0 such that for every g € F with ||g|| < 1
there is f € E such that

|fl <a and |Tf—g| <gq.
Then for each g € F there is f € E such that Tf = g and ||f] < 12 |lg]|-

1-q

So approx. surjectivity implies surjectivity with an estimate
of the pre-image.

Closed graph theorem:
Def T:E — F has a closed graph if

fomfo e
1f =gl 2T =9V fEEgEFR.

In other words, if graph(T) = {(f,Tf)| f € E}is closed
in the normed VS E x F.

THM: E,F Banach,then T is bnd if f
graph(T) is closed

Tietze: (not very enlightening)

Tietze’s Theorem. Let (£2,d) be a metric space. Any subset A € {2 is
a metric space with respect to the induced metric, and if f € Cy(£2) is a
bounded continuous function, one can consider its restriction

Tf:=flaeCp(4)

to the set A. The operator T : Cp(f2) — Cp(A) is linear with [|T|| < 1.
Tietze's theorem states that if A is closed, then T is surjective.

Theorem 15.15 (Tietze®). Let (22,d) a metric space, A C 2 a closed
subset and g € Cp(A;R). Then there is h € Cy(£2;R) such that h|a = g and

12lloe = ll9llc-

Uniquely determining a function based on...

Lemma 9.17. Let f € L'(a.b). Then
b
02 Ili=sw{| [ s

In particular, f =0 a.e. if and only if f: f(s)g(s)ds =0 for all g € Cla,b].

|9 €Clab], ol <1}

Moments, Fourier coefficients, etc.

TH: In a complete metric space, every bounded sequence
has a convergent subsequence, weakly.

Erik Leering

Duality theorems:

Below | conclude with only stuff about duality CH16
since it has to be somewhere, but not in a separate
file. Dual def is in the spaces of note.

Does E’ always exist (nonzero)?

Often yes: E fin dim, E’ same dim

E inner product space, E’=E.

Idea: the dual may be rich enough to distinguish
points in E based on evaluation with point in E”:
Vx#y€E,Ap €E's.t. p(x)# @(¥).

Theorem H Hilbert —» H'isometrically
isomorphihc to H.Think of row/col vectors.

Your best mates Riesz-Fréchet say then, as proof:
h,g €EH,any ¢ € H'~ <.,m > for some m € H.
p(h) =<h,m>#@(g)iff <h—g,m>%0

General case: Hahn-Banach

For (E,|I.1D,Ey € E & ¢, € Ej. Then
p €EE's.t.o(f) = o (f)V f € E,

& llgllzr = llllg, -

Cor: every Hilbert space H with countable basis is
separable.

Corollaries:
-Vf €E,3p € E's.t. lloll =1and |p(f)]| = lIfl.
-Vf €E,llfll= sup |p(f)l

lloll=1

-Vf € E, have span(A) = E iff
Vo € E' we have ¢l,=0-> ¢ =0
If H is a Hilbert space then:

- VfeH3gll=1eH:|lfll=1<f.g>]|

- lfll= sup | < f,g>]| obviously,
llgll=1
- Span(A) = H iff Yg € H have
<f,g>=0VfEA->g=0.

This last one can be restated as
At ={0}iff g € H with g € A* - g = 0. Trivial.

| cannot be bothered with the pf and the further
corollaries.
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Sobolev and Poisson

*Note: this document and the one on operators are heavily linked. | want to keep the document on
operators and spaces as general as possible. Therefore, this document implicitly draws results/facts
from the others.

u'=—f, u(a) =ulb)=0
To solve this, we need to move to Lebesque spaces and use the weak derivative:
Def: weak derivative:

g € L?(a,b) is said to be a weak derivative of f € L*(a, b) if they satisfy

ff gyds = — fab f'ds holds for every test function i € Cg[a, b].
This can be rewritten as < g, > = —< f,§' >

We call the space of all weakly differentiable functions H(a, b), the first order Sobolev space.

Variational method for Poisson

We could say that u € H?(a, b) since we have a second derivative.

Now rewrite Poisson to < ', u’ >2=<1,f >2, Y € C¢[a, b].

We now constrain u to be in the space H01, which is defined as you would expect, with norm

[l yy = (1211
Then we rewrite the RHS by using ¢: Hl(a,b) » C, @(v) :=<v,f >2
Then Riesz-Fréchet yields a unique u € Hg (a, b) such that
<viu >,=<vu >y= pw)=<uv,f >,

For all v € Hg (a, b). Inshort, thereisaus.t. < v',u’ >,= < v, f >,, which holds for allv € H} >
Cd[a, b], as required for our problem.

Dirichlet-Laplacian & Hilbert-Schmidt

Def: Dirichlet-Laplacian: Ap: HZ (a, b) — L?(a,b), Apu = u"

The importance of writing this as an operator is that there is an inverse operator Af,l:L2 — H? that
turns out to be a HS (kernel) integral operator, which turns out to be bounded, which means that the
Poisson problem is well-posed. This is because —Ap! maps the problem to its unique solution.
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Perturbations

u' —Tu=—f, u € H¢(a,b). Itturns out T ‘small enough’ is still well-posed.

We use the property that (A, bijective and bounden) + (Poisson well — posed)

- I —TAR':1? - 1? is invertible.

Note that we can rewrite this problem using the inverse Dirichlet as —f = (I — TAp')Apu.
Lemma

Now we can just look at conditions s.t. (I — A)u = f has a unique solution, for A € L(E) a
perturbation. Without too much work | note that if f € Eiss.t. u:= YA"f converges inE,
then u— Au = f.

Theorem from the above, }||A"|| < o0, - (I — A) is invertible with

(I—A)~1 =Y A", the Neumann series.

Returning to our problem, the perturbation is still well-posed if ||TA51|| <1

Then in the book there is Volterra which | skip here.

Using compact-self adjoint & Spectral theorem

We can consider the general eigenvalue equation Au — Au = f

Where f € H Hilbert, A € K, Ais compact self-adjoint. This is solvable under the following

theorem (with (ej) from the spectral theorem):

Theorem 13.13 (Fredholm Alternative!). In the situation above, precisely 3) IfA =0, then (13.2) is solvable if and only if f € ran(A); in this case
one of the following cases holds: one particular solution is
1) If A# 0 is different from every A;, then (A — A) is invertible and u = Z B /\L (f,e5) €5
JE j
1
el Aj— A

this series being indeed convergent.

wi=(A=M)"'f = %Pof + Z}, (F.ej) e

ts the unique solution to (13.2).

2) If A # 0 is an eigenvalue of A, then (13.2) has a solution if and only if
f Lker(Al — A). In this case a particular solution is

1, 1
w = fXPOf + ZjEJ,\ /\]77/\ (f.ej) ey,
where Jy :={j € J | \; # A}.
Let us consider then Apu = —f, with its solution —Ap f = Af = [ g(.,s)f(s)ds,
g (s) the Green function. Note the following:

- AisaHS —operator and hence compact
-k issymmetric and real — valued, hence A is self adjoint
- ker(A) = {0} by construction.

Hence: we can apply the spectral theorem if we can find the eigenvalues and eigenvectors of A.
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So first, to determine the eigenvalues/eigenvectors:

Lemma 14.1. Let A#0, p= —7x. Then
fe LQ(H. b) and Af=Af |+— fedom(Ap) and Apf=pf.

Moreover, in this case either f =0 or A > 0.

Where dom (Ap) = HZ(a, b).

By ez DE-theory we have Au = Au, A > 0 if f

\/%) + Bsin (t/v/2). Now this solution can be further sharpened by the boundary

conditions. In particular, letting a =0,b = 1,u(0) =0 - a = 0.

Thenu(1) = 0,8 # 0 - sin (j—i) =0 - A,= ﬁ,en = Lsin (nmt) (normalized).

V2

u=acos(

Furthermore, A is injective to L?, so the system (e,,) is an orthonormal basis for L%(0,1), and:

1 oc 1 1
(Af)(t) = /0 g(t,s)f(s)ds = Z (2;3211:2 /0 f(s)sin(nms) dx) sin(nmt)

n=1

Which converges by the theory in L? but not necessarily pointwise. However it can be shown
that it does in fact converge uniformly in t=[0,1]. Furthermore:

(t.5) i sin(nm - t) sin(nm - s)
q(t,s) = :
: Inln2
n=1 e As an absolutely convergent series in C([0,1]x[0,1]).

Schrédinger operator & Strum Liouville equation

Is just a perturbation of the Dirichlet-Laplacian with a multiplication operator:

Lu= —u" +qu for some q € C[0,1] a positive continuous function, called the potential. Once
again the domain is dom(L) = Hg (0,1). We can consider the eigenvalues of L.

Lu = Au, then u € C?[0,1] and either u = 0 or A < 0. In particular, L is injective (1-1).

Sturm-Liouville:

Lu = f,iswell-posed for f € L?(0,1), i.e., L: H} — L? is bijective with bounded inverse. To this end,
we define the new inner product a(u,v) =<u’,v’' >, +< qu, v >,. The induced norm is

equivalent to the usual norm on H(}, and (Hg,||. ) is a Hilbert space. Then the mapping
v »< v, f >, is bounded, and by Riesz-Fréchet 3!u € H} s.t. a(u,v) =< f,v > Vv € H}.

For v € C},then, u € HZ, and Lu= f, and L is bijective. It can also be shown that L™ is bnd.
In the book they show L~ can be found (as a HS-integral operator) but that is cumbersome and
skipped.
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Fourier analysis

From Chapter 1:

The number Theorem 15.7 (Du Bois-Reymond). There ezists a function f € Cper[0,1]
1 - 1 o
fn) = (f,en) = / f(t)e,(t)dt = / f(i‘)e_zmmdt
JO J0

is called the n-th Fourier coefficient of f. Note that n ranges over the
whole set of integers Z. Bessel’s inequality in this context reads

N =82 2 Lo
(1.3) o< = [P .

such that its partial Fourier series at t =0,

Suf )= 30 fRe| =3 F  (meW)

k=—n k=—n

does not converge to f(0).

Need the Dirichlet kernel:

With e, (t) = e?™mit

Define the Dirichlet kernel

Di(s) = sm(2n+1)ns.

This can be extended after Lebesque and Hilbert to inf dim: sin s

so that T, f = fol Dn(s)f(s)ds for f € E. We claim that
For a function f € L' (R) its Fourier transform Ff is defined by

1
||Tn||:/O |Dn(s)] ds.

_ TR 1 B
(93) (f-f)(f) o ‘/:!E f(b) ¢ ds (t €R). Proof. We consider the linear functionals
Tn:Cper[0.1] — C.  Tof = (Snf)(0)
The integral is well-defined since for n € N. Then
n 1 1 s
. . . 2miks £( L) s sin(2n + 1)ms o) de
/R [£(s)e™] ds = /R [£()| ds = | £l < oo. Il = Z/ o= [FIEEIE )
Moreover, by the triangle inequality for integrals it follows that [(F f)(t)]| <
[[f]|; and taking the supremum over t € R we arrive at
(9-4) IFflloe <IIfll (f € L(R)).
This shows that the Fourier transform is a bounded linear operator Then some stuff and some more
F - (Ll (R) H“l) — (BR). ||l stuff with which | can’t be bothered

and then ||T,, || is the harmonic

Applying the dominated convergence theorem one can show that Ff is a i . )
series which diverges.

continuous function for every f € L}(R); see Exercise 7.21. Regarding the
asympotic behaviour of F f(t) for large values of [t| we have the following
analogue of Theorem 9.19.

Theorem 9.20 (Riemann Lebesgue®). If f € L}(R), then Ff € C(R) and
lim (Ff)(t) =0.
[t| =00

For more on Fourier, see the appendix.

Page | 14
Erik Leering Fourier Analysis



