AFA — Applied Functional Analysis

Know-by-heart

Questions

Erik Leering
4-4-2024

This document and its solutions are
intended as follows: for the AFA oral
exam, it is often the case that you
are asked to recite theorems and
their proofs by heart. That is why
the reader should take theorems
from this reader, if these are named,
try to write them out by heart, and
them try to reproduce the proof
from memory. Actual proofs and
definitions are provided in the
solution document.

The idea is that if you know all of
this by heart, you’ll do well on the
oral exam. Good luck.




Lemma 1.11 (Gram® Schmidt?). Let N € NU{oc} and let (f,)1<n<n be a
linearly independent set of vectors in an inner product space E. Then there
is an orthonormal system (e,)1<n<n in E such that

span{e; | 0 < j < n}=span{f; | 0 < j < n} foralln < N.

Theorem 2.1 (Cauchy Schwarz Inequality™?). Let (E,(-,-)) be an inner
product space with associated norm || f|| :=\/(f. f) for f € E. Then

(Ll < flHlgll - (f.g € E),
with equality if and only if f and g are linearly dependent.

Example of bounded linear mapping?

Example 3.12 (Scale of /P-Spaces). Let f : N — K be any scalar sequence.
We claim that

(3.5) IFlloe < NNz < M fIly in [0, 00].

Example 3.14 (p-Norms on Cla,b]). For each interval [a,b] C R we have

(3.6) Iflly < vb—allflly and [Iflly; < vVb—allflly
for all f € Cla,b].



Theorem 3.22 (Weierstrass). Let [a,b] be a compact interval in R. Then
the space of polynomials Pla. b is dense in Cla.b] with respect to the supre-
Mum norm.

We let, for k € N or k = oo,
C*la.b) := {f : [a.b] — K | f is k-times continuously differentiable}.

Since polynomials are infinitely differentiable, Weierstrass’ theorem implies
that C*[a, 0] is dense in Cla, b].

Only know by heart

Exercise 3.4. Show that the inclusions
(tC?Core,
are all strict. Give an example of sequences (fy,)nen- (Gn)nen in £1 with

[falloe = 0, Wfally = 00 and lgnlly = 0, [lgnll; — oo.

Lemma 4.9 (Second triangle inequality). Let ({2.d) be a metric space.
Then

< d(x,y)+d(z, w) for all x,y,z, w e (2.

|d(x,z) — d(y, w)

Theorem 4.16. A linear mapping 1" : E — F between two normed spaces
(EL || |lg) and (F.||-||g) is continuous if and only if it is bounded.

Lemma 4.20. Let A C (2 be subset of a metric space (£2.d). If A is
compact, then A is closed in §2; and if {2 is compact and A is closed in (2,

then A is compact.



Theorem 4.21 (Bolzano' Weierstrass). With respect to the Euclidean met-
ric on K¢ a subset A C K% is (sequentially) compact if and only if it is closed
and bounded.

Only know by heart.

Theorem 4.29. Let E be a finite dimensional linear space. Then all norms

on E are equivalent.

Theorem 4.37. A normed space E is separable if and only if there is a
countable set M C E such that span(M) is dense in E.

Only know by heart.

Corollary 4.34. In each infinite-dimensional normed space E there is a
sequence of unit vectors (fn)nen such that ||fn — fml| = 1 for all n,m € N
with n # m.

Only know by heart.

Example 5.10. Every finite-dimensional normed space is a Banach space.

Example 5.11. Let 2 be a nonempty set. Then (B(£2), -] ) is e« Banach
space.

Note here B means the set of all bounded functions, not a ball.

Example 5.13. The space Cla,b] is a Banach space with respect to the
supremum norm ||-|[ -



Definition 7.1. The Lebesgue outer measure of a set A CR is

A*(A) = inf anl Q.|

where the infimum is taken over all sequences of intervals (@), ),en such that
AClY, ey @n- (Such a sequence is called a cover of A.)

Know by heart

Theorem 7.16 (Dominated Convergence Theorem). Let (f,)nen be a se-
quence in Ll(X ) such that f = lim, oo fn exists pointwise almost every-
where. If there is 0 < g € INX) such that |f,| < g almost everywhere, for
each n € N, then f € LNX). ||f, — f|l; = 0 and

fodh— [ fdA
X X

Theorem 7.18 (Completeness of L), The space LN X) is a Banach space.
More precisely, let (fn)nen be a Cauchy sequence in LN X). Then there are
functions f,g € LN X) and a subsequence (fy, )ken such that

|f?1k| <g ae and fﬂ-k —f ac.
Furthermore, ||f, — f ||1 — 0.

Theorem 7.22 (Holder’s Inequality). Let q be the dual exponent defined by
Yot Yy =1. If f €TP(X) and g € (X)), then fg € TNX) and

| [ o < sl Lol



Density. Finally, we return to our starting point, namely the question of
a natural “completion” of Cla.b] with respect to ||-||; or ||-||o. If X = [a.b]
Is a finite interval, 1 < p < 0o and }’p + yq = 1, then one has

Cla.b] C Cy(a,b) C I°(a,b) C IP(a.b) C 1Lt (a, b)

with
Ifll, <@®=a)u|fl, forall felP(a,b),
Ifll, < (0—a)|fle forall feL=(a,b).
1flloe = 1 |l oo for all f € Cy(a.b).
(The proot is an exercise.) The following result gives the desired answer Ex.7.15

to our question. but once again, we can do nothing but quote the result
without being able to provide a proof here.

Theorem 7.24. The space Cla,b] is ||-||,-dense in IP(a,b) for 1 < p < co.

Note: The space Cy(a,b) is not ||-||;so-dense in I>®(a,b) . Ex.7.16

Theorem 8.5. Let H be an inner product space, and let A # 0 be a complete
convexr subset of H. Furthermore, let f € H. Then there is a unique vector

Paf =g € A with ||f —g|| =d(f, A).

Hint: parallelogram identity

Corollary 8.10 (Orthogonal Decomposition). Let H be a Hilbert space,
and let F C H be a closed linear subspace. Then every vector f € H can be
written in o unique way as f = u +v where w € F and v € F+.

Theorem 8.12 (Riesz Fréchet!). Let H be a Hilbert space and let p : H —
K be a bounded linear functional on H. Then there exists a unique g € H
such that

o(f)=(f.q)  forall feH.



Theorem 8.13. Let (H, (-,-)) be an inner product space and let (fn)nen be
a sequence of pairwise orthogonal elements of H. Consider the statements

(i) The series f =" fn converges in H.

(i) oazy Ifall® < oo

Then (i) implies (i) and one has Parseval’s identity?
Q 2 o0 2

(8.1) IAE =" Iall®

If H is a Hilbert space, then (ii) implies (i).

Only proof (i), optional (ii)

Theorem 8.15. Let H be a Hilbert space, let (¢;)en be an orthonormal
system in H, and let f € H. Then one has Bessel’s inequality

S o° 2 2
(8.2) 2 e <P < oo
Moreover, the series
Pfi=3 _ (fee
is convergent in H, and Pf = Ppf is the orthogonal projection of f onto

the closed subspace

F :=5span{e; | j € N}
Finally, one has Parseval’s identity  ||Pf||* = ZOOI (f, ej)|2.
J:

Lemma 9.17. Let f € LY(a,b). Then

(9.2) WM—wp‘/f ;) ds

In particular, f =0 a.e. if and only if jj f(s)g(s)ds =0 for all g € Cla,b].

lg€Clat. gl <1}

Only know by heart



Lemma 10.5. The space 12(a,b) decomposes orthogonally into

[?(a,b) = C1 & {¢' | 1 € Clla.b]}.
with ||-||5-closure on the right-hand side.

Corollary 10.7. One has H'(a,b) C Cla,b]. More precisely, f € H'(a,b) if
and only if f has a representation

f=Jg+cl
with g € I?(a.b) and ¢ € K. Such a representation is unique, namely
(f = Jf.1)

g=1f and ¢=-r—"""".
b—a

Moreover, the fundamental theorem of calculus holds, i.e.,
d
f f'(s)ds = f(d) — f(c) for every interval [c,d] C [a,b].

Only know by heart: this is how L? relates to derivatives, and how H! relates to LZ.

Lemma 10.10 (Poincaré Inequality?). There is a constant C > 0 depending
on b— a such that

(10.8) lulle < Cllullz2

for all uw € H(a,b). In particular, (10.7) is an inner product and ||-HH(1) 15 a

norm on Hy(a.b).



Lemma 11.3. Let f € I'(a,b) and n € N. Then

t
(J“f}{t):m/a (t—s)""'f(s)ds forallt € [a,b].

In particular, J" is again an integral operator, with kernel function

Fn(t, ) = Lg(8)(t =" (st € [a,]).

1
(n—1)!

Proof. This is proved by induction and Fubini’s theorem. O

Example 11.9 (Integration Operator). The n-th power of the integration
operator J on E = C[a, b] is induced by the integral kernel

{f’. _ S}n—l
(n—1)! "~

From this it follows that |[J"(|; g = Ya# 1" = || J||™. (See Exercise 11.7.)

n(t,8) = sty (£,5)

Only know by heart; Fubini only tells you how to integrate a function of 2 variables.

Definitions 12.1:

- Finite dimensional operator?
- Finitely approximable operators?
- Compact operators?

Corollary 12.10. Let H, K be Hilbert spaces, and let A : H — K be a
bounded linear operator. Then there is a unique bounded linear operator
A*: K — H such that

(Af.g9) = (f,A%q)y forall feH, geK.
A% = [|All-

Furthermore, one has (A*)* = A and



Def 13.2: Approximate eigenvalues

Lemma 13.4. Let A be a bounded operator on the Banach space E/. If \I— A
is invertible, then A cannot be an approzimate eigenvalue. If |[\| > || A||, then
M — A is invertible.

Theorem 13.8. Let A be a bounded self-adjoint operator on a Hilbert space
A. Then (Af. f) € R forall f € H and

A=A (Af.DI 1 Fed, |fll =1}

| := sup{

Only prove |||4]|| < ||Al|

Theorem 13.11 (Spectral Theorem). Let A be a compact self-adjoint op-
erator on a Hilbert space H. Then A is of the form

(13.1) Af = ZJ_ N (f.ej)e;  (feH)
for some (finite or countably infinite) orthonormal system (ej); and real

numbers A\; # 0 satisfying lim;_,oo Aj = 0. Moreover, Aej = Aej for each j.

More precisely, the orthonormal system is either (e;) 3?’:1 for some N € ¥
or (ej)jen. Of course, the condition lim;_. Aj = 0 is only meaningful in
the second case.



Lemma 13.10. Let A be a compact self-adjoint operator on a Hilbert space.
Then A has an eigenvalue \ such that |\ = || A]|.

Only know by heart for the Spectral Theorem

Lemma 13.9. Let A be a self-adjoint operator on a Hilbert space. Then the
following assertions hold.

a) FEvery eigenvalue of A is real.

b)  Figenvectors with respect to different eigenvalues are orthogonal to each
other.

c) If F is an A-invariant subspace of H, then FL is also A-invariant.
May be used for the Spectral Theorem; A-invariant implies A(F) S F

Theorem 13.11 (Spectral Theorem). Let A be a compact self-adjoint op-
erator on a Hilbert space H. Then A is of the form

(13.1) Af = Zj Nj{f.ejye;  (feH)

for some (finite or countably infinite) orthonormal system (ej); and real
numbers \j £ 0 satisfying lim;_ o \j = 0. Moreover, Ae; = \e; for each j.

More precisely, the orthonormal system is either (e;) ?:1 for some N € N
or (ej)jen. Of course, the condition lim;_,., A; = 0 is only meaningful in
the second case.

Theorem 15.1 (Baire). Let (£2.d) be a nonempty complete metric space
and let (Ay)nen be a sequence of closed subsets of 2 such that

0= U A,
neN

Then there isn € N and x € 2,r > 0 with B(x,r) C A,,.
May use the following:

Lemma 15.2 (Principle of Nested Balls). Let (£2,d) be a complete metric
space, and let

B[Il,f’]] 2 B[:L‘Q,?‘Q] 2 B[.’rg, .?"3] DI

be a nested sequence of closed balls in it. If r,, — 0. then x = lim,,_ . T,
exists and

(15.1) ﬂneNB[a«n, ra] = {x}.
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Definition 15.3

- Uniform boundedness of a collection 7" of linear mappings E to F
- Pointwise boundedness of the same family

Theorem 15.4 (Uniform Boundedness Principle). Let E' be a Banach space,
let F' be a normed space, and let T be a collection of bounded linear operators
from E to F. Then T is uniformly bounded if and only if it is pointwise
bounded.

Theorem 15.6 (Banach-Steinhaus?). Let E,F be Banach spaces, and let
(Th)new € L(ES F) be a sequence such that

Tf:= lim T,f

TE— OO

exists for every f € E. Then T s a bounded operator, (T, )new is uniformly
bounded, and
Il < liminf [T,

Proof. For each f € E, since (T, f),em converges, also (|15, f|)nen con-
verges, and therefore sup, || Tnf|| < oc. By the uniform boundedness
principle, sup,, o || Tn|| < co. If f € E with | f|| < 1, then by the continuity
of the norm.

ITf|| = lim |Tf| = liminf ||T,, f|| < liminf ||T}]| .
— 00 n—oo n—oo
Taking the supremum over all such f concludes the proof. |

Only really necessary to know the theorem
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Theorem 15.8 (Open Mapping Theorem). Let E| F' be Banach spaces and
let T : E — F be a bounded linear mapping which is surjective. Then there

1s a > 0 such that for each g € F there is f € E with ||f|| < al|g| and
Tf=g.

May use in-between theorem “Rough surjective + approx. pre-images” = surjective

Theorem 15.11. Let E. F be Banach spaces, and let T € L(E; F). Suppose
that there exist 0 < g < 1 and a > 0 such that for every g € F with ||g| <1
there is f € E such that

[fll<a and |Tf—gl <q.
Then for each g € F there is f € E such that Tf = g and || f]| < ﬁ |gl|-

Definition of graph(T)

Theorem 15.12 (Closed Graph Theorem). If E, F are Banach spaces and
T : E — F is a linear mapping, then T s bounded if and only if it has a
closed graph.

Definition: separable normed space

Theorem 16.2 (Hahn Banach,! Separable Case). Let E be a separable
normed space over the scalar field K. Let Eg C E be a subspace and po € £
a bounded linear functional on Ey. Then there is an extension o € E' of ¢
to all of E with ||| = ||¢oll-

May use

Lemma 16.1. Let E be a real linear space and let p : E— R be a sublinear
functional. Furthermore, let F' C E be a linear subspace, ¢ : ' — R a linear
mapping with ¢ < p on F. Given any h € E \ F there is o € R such that
the definition

Fi:=F®Rh, pi(f+th):=¢(f)+at (teR, feF)

yields a linear mapping p1 : F1 — R with ¢1|p = ¢ and o1 < p on F}.
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Examples and counter-examples:

Compact spaces

Complete spaces

Finite rank operators

Finitely approximable operators
Compact operators

Adjoint operators

Operators which have eigenvalues
Operators with approximate eigenvalues
Self-adjoint operators

An application of the spectral theorem for self-adjoint operators
Separable spaces
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