Afdeling Toegepaste Wiskunde Universiteit Twente

Applied Functional Analysis (150630)

Friday, January 26, 2007 09.00–12.00

- an explanation to every answer is required.
- you can make use of a calculator.
- (part of) the score to exercises 1(c) and 4(a), (b), (c) may be earned by homeworks; see the score table below (these are indicated by <u>·</u>).
- 1. The normed vector space of all bounded real sequences is denoted by ℓ^{∞} , its norm by $|\underline{a}|_{\infty} = \sup_{n \in \mathbb{N}} |a_n|$, where $\underline{a} = (a_1, a_2, a_3, \dots)$ with $a_n \in \mathbb{R}$.
 - (a) Check the triangle inequality for $| |_{\infty}$.
 - (b) Give an example of two vectors $\underline{a}, \underline{b} \in \ell^{\infty}$ for which $|\underline{a} + \underline{b}|_{\infty}^{2} + |\underline{a} - \underline{b}|_{\infty}^{2} = 2 |\underline{a}|_{\infty}^{2} + 2 |\underline{b}|_{\infty}^{2}$ does not hold. What conclusion can be taken for ℓ^{∞}

We define $c_0 = \{\underline{a} \in \ell^{\infty} | \lim_{n \to \infty} a_n = 0\}$ to be the linear subspace of all sequences which tend to zero.

- (c) Show that c_0 is a closed subset of ℓ^{∞} .
- 2. Consider the boundary value problem for y:

$$\begin{cases} y' - y &= j\\ y(0) &= 0 \end{cases}$$

where f is a given function in $L^2(0, 1)$.

(a) Show that $y(x) = \int_0^x e^{x-t} f(t) dt$ is a solution to the problem. Define the integral operator $A : L^2(0,1) \to L^2(0,1)$ by $Ag(x) = \int_0^1 k(x,t)g(t) dt$ for $g \in L^2(0,1)$ where

$$k(x,t) = \begin{cases} e^{x-t}, & \text{if } 0 \le t < x \le 1\\ 0, & \text{if } 0 \le x \le t \le 1. \end{cases}$$

- (b) Show that y(x) from (a) equals Af(x).
- (c) Prove that A is bounded (give an upper bound for ||A||).
- 3. We define $A: \ell_2 \to \ell_2$ to be $A(a_1, a_2, \dots) = (a_1 + a_2, a_2 + a_3, a_3 + a_4, \dots)$
 - (a) Prove that A is not invertible.
 - (b) Show that $\sum_{i=1}^{\infty} |a_i a_{i+1}| \leq \sum_{i=1}^{\infty} a_i^2$. Hint: Consider the inner product between the vectors $(|a_1|, |a_2|, \dots)$ and $(|a_2|, |a_3|, \dots)$.
 - (c) Prove that A is bounded with ||A|| = 2.
- 4. Let E be an infinite dimensional complex Banach space. Suppose $A : E \to E$ is bounded and linear and has the property that $A^k = 0$ for some positive natural number k.
 - (a) Prove that $\lambda = 0$ is an eigenvalue of A.
 - (b) Show that $\sigma(A) = \{0\}$. Hint: Use the Neumann series.
 - (c) Give an example of a non-zero operator $A: \ell_2 \to \ell_2$ for which $A^2 = 0$.
- 5. Let $A: L^2(0,1) \to L^2(0,1)$ be the operator on the complex Hilbert space $L^2(0,1)$, defined by

$$Af(x) = \int_0^x f(t) dt \quad \text{for all } f \in L^2(0, 1).$$

- (a) Show that A does not have any eigenvalue.
- (b) Determine A^* .
- (c) Prove that AA^* is an integral operator of the type

$$AA^*g(x) = \int_0^1 k(x, y)g(y) \, dy$$
 for all $g \in L^2(0, 1)$.

(d) It has been proved that the eigenvalues of AA^* are

$$\lambda_n = \frac{1}{\pi^2} \frac{4}{(2n+1)^2} \quad \text{with } n \in \mathbb{Z}.$$

Determine the spectrum $\sigma(AA^*)$ of AA^* .

GRADING POINTS

1.	(a)	2	2.	(a)	3	3.	(a)	2	4.	(a)	2	5.	(a)	2
	(b)	2												
	(c)	3		(c)	2		(c)	3		(c)	2		(c)	3
													(d)	2

Total: 36 + 4 = 40 points.