Afdeling Toegepaste Wiskunde Universiteit Twente

Applied Functional Analysis (150630)

Friday, January 25, 2008, 09.00-12.00

- An explanation to every answer is required.
- You can make use of a calculator.
- (Part of) the score to exercise 1(d) and 3(c),(d) may be earned by home-works; see the score table below (these are indicated by .).
- 1. The linear space C[0,1] of continuous real functions on the interval [0,1] is endowed with

$$\left\|f\right\|_{\infty} = \max_{0 \le t \le 1} \left|f(t)\right|$$

and

$$||f|| = |f(0)| + \int_0^1 |f(t)| dt.$$

- (a) Show that ||f|| defines a norm on C[0, 1].
- (b) Prove that both norms $\| \, \|_{\infty}$ and $\| \, \|$ are non-equivalent norms on C[0,1].
- (c) Give an example of a linear functional $A : C[0,1] \to \mathbf{R}$ which is continuous with respect to $\| \|_{\infty}$, but not with respect to $\| \|$.
- (d) From the course it is known that C[0,1] endowed with $|| ||_{\infty}$ is a Banach space. Is C[0,1] also complete with respect to || ||?
- 2. By $L^2(0, 2\pi)$ we denote the real vector space of all (classes of) real squareintegrable functions on $(0, 2\pi)$, endowed with the usual inner product

$$(f,g) = \int_{x=0}^{2\pi} f(x)g(x) \, dx.$$

Let D be the closed linear subspace,

$$D = \left\{ f \in L^2(0, 2\pi) \right| \int_{x=0}^{2\pi} f(x) \, dx = 0 \, \right\}.$$

- (a) Determine D^{\perp} , the orthoplement of D in $L^2(0, 2\pi)$.
- (b) Find the best approximation in D to $g(x) = x^2$. During the course it was demonstrated that $\{g_0, g_1, h_1, g_2, h_2, \ldots\}$, (with $g_0(x) = \frac{1}{\sqrt{2\pi}}, g_k(x) = \frac{1}{\sqrt{\pi}} \cos(kx), h_k(x) = \frac{1}{\sqrt{\pi}} \sin(kx)$) is a maximal orthonormal system (MOS) for $L^2(0, 2\pi)$
- (c) Give a MOS for the subspace D.
- 3. The linear operator $A: l^2 \to l^2$ is given by

$$A(b) = (\beta_2, \beta_2, \beta_4, \beta_4, \beta_6, \beta_6, \ldots)$$
 if $b = (\beta_1, \beta_2, \beta_3, \ldots)$.

- (a) Show that A is bounded and determine ||A||.
- (b) Calculate A^2 and A^* .
- (c) Is A a compact operator? Exlain your answer.
- (d) Find the spectrum $\sigma(A)$ of A.
- 4. Let *H* be a Hilbert space and $T: H \to H$ a bounded linear operator. A linear subspace $Y \subset H$ is said to be **invariant under** *T* if $T(Y) \subset Y$.
 - (a) Show that a closed linear subspace Y of H is invariant under T if and only if Y^{\perp} is invariant under T^* .
 - (b) Give an example of a non-trivial closed linear subspace Y of $L^2(0,1)$ which is invariant under T where T is defined by $Tf(x) = \int_0^x f(t) dt$. (Non-trivial means: $Y \neq \{0\}$ and $Y \neq L^2(0,1)$).
- 5. Consider $A: L^2(0,\infty) \to L^2(0,\infty)$ given by

$$Af(x) = \int_0^x f(y) dy$$

- (a) Prove that A is unbounded.
- (b) Determine A^* .

GRADING POINTS

1.(a)2	2.(a)2	3.(a)2	4.(a)3	5.(a)2
(b)2	(b)2	(b)2	(b)3	(b)3
(c)2	(c)2	(c)2		
<u>(d)3</u>		$\overline{(d)4}$		

Total: 36+4=40 points.