Afdeling Toegepaste Wiskunde Universiteit Twente

Applied Functional Analysis (150630)

Tuesday, January 27,2009 09.00-12.00

- An explanation to every answer is required. You can make use of a calculator.
- (Part of) the score to exercise 1(c) and 6(a),(b),(c) may be earned by homeworks; see the score table below (these are indicated by <u>.</u>).
- 1. We consider the sequence (f_n) with $(f_n) \in C[-1, 1]$ defined by

$$f_n(x) = (1 - |x|)^r$$

- (a) Does the sequence converge uniformly?
- (b) We equip C[-1,1] with the norm $||f||_2 = \left(\int_{-1}^1 f^2(x)dx\right)^{1/2}$. Does the sequence converge in $(C[-1,1], || ||_2)$?
- (c) Show that $(C[-1,1], || ||_2)$ is not complete
- 2. In the real Hilbert space $L^2([-1,1])$ the set

$$S = \left\{ g_0(x) = \frac{1}{\sqrt{2}}, g_n(x) = \cos(n\pi x), h_n(x) = \sin(n\pi x) \right\} n = 1, 2, 3, \dots$$

forms a maximal orthonormal system. Consider the linear subspace E consisting of all even functions, so

$$E = \left\{ f \in L^2([-1,1]) | f(x) = f(-x) \text{ for almost all } x \in [-1,1] \right\}$$

- (a) Prove $\{g_0,g_n\}$ $n=1,2,3,\ldots$ is maximal orthonormal system in E
- (b) Define the linear operator $A: L^2[-1,1] \to L^2[-1,1]$ by (Af)(x) = f(-x) for $f \in L^2[-1,1]$ and $x \in [-1,1]$. Show that A is bounded, find ||A||
- (c) Prove that E is a closed linear subspace of $L^2([-1,1])$. (hint: view E as being the null space of an operator)

- 3. Suppose H is a real Hilbert space and $\varphi: H \to R$ is a non-zero bounded linear functional.
 - (a) Prove that there is a $g \in (\mathcal{N}(\varphi))^{\perp}$ such that $\varphi(g) = 1$.
 - (b) Let $f \in H$ with $\varphi(f) = 1$ and $f \neq g$. Prove that ||f|| > ||g||
 - (c) Find the real valued function $g \in L^2(0,1)$ such that $\int_{1/2}^1 g(x) \, dx = 1$ and $\int_0^1 (g(x))^2 \, dx$ minimal
- 4. Consider $A: L^2(0,1) \to L^2(0,1)$ given by

$$(Af)(x) = \int_0^1 e^{-ix-y} f(y) \ dy$$

- (a) Determine the adjoint A^* of A
- (b) Prove that ||A|| < 1
- (c) Explain that the integral equation $f(x) \int_0^1 e^{-ix-y} f(y) \, dy = g(x)$ has a unique solution $f(x) \in L^2[0,1]$ for every choice $g(x) \in L^2[0,1]$
- 5. The linear operator $A: l^2 \to l^2$ is given by

$$A(x_1, x_2, x_3, x_4, \ldots) = \left(\frac{1}{2}x_2, \frac{1}{2}x_1, \frac{1}{4}x_4, \frac{1}{4}x_3, \frac{1}{6}x_6, \frac{1}{6}x_5, \ldots\right)$$

 \mathbf{so}

$$(Ax)_{2n-1} = \frac{1}{2n}x_{2n}$$
 and $(Ax)_{2n} = \frac{1}{2n}x_{2n-1}$

- (a) Calculate A^*
- (b) Find the spectrum $\sigma(A)$ of A (hint: take first a look at the eigenvalues of A)
- 6. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers.
 - (a) Show that the operator $A: l^2 \to l^2$ with $A(x_1, x_2, ...) = (a_1x_1, a_2x_2, ...)$ is densely defined and closed
 - (b) For what choices of (a_n) is A an unbounded operator?
 - (c) Determine the domain of A^* and $A^*(y_1, y_2, ...)$

	1.(a)2	2.(a)2	3.(a)2	4.(a)2	5.(a)2	6.(a)2
GRADING POINTS	(b)2	(b)2	(b)2	(b)2	(b)3	$\overline{(b)2}$
	(c)3	(c)2	(c)3	(c)1		$\overline{(c)2}$

Total: 36+4=40 points.