Applied Functional Analysis (150630)

Tuesday, January 27,2009 09.00-12.00

- An explanation to every answer is required. You can make use of a calculator.
- (Part of) the score to exercise $1(\mathrm{c})$ and $6(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ may be earned by homeworks; see the score table below (these are indicated by .).

1. We consider the sequence $\left(f_{n}\right)$ with $\left(f_{n}\right) \in C[-1,1]$ defined by

$$
f_{n}(x)=(1-|x|)^{n}
$$

(a) Does the sequence converge uniformly?
(b) We equip $C[-1,1]$ with the norm $\|f\|_{2}=\left(\int_{-1}^{1} f^{2}(x) d x\right)^{1 / 2}$. Does the sequence converge in $\left(C[-1,1],\| \|_{2}\right)$?
(c) Show that $\left(C[-1,1],\| \|_{2}\right)$ is not complete
2. In the real Hilbert space $L^{2}([-1,1])$ the set

$$
S=\left\{g_{0}(x)=\frac{1}{\sqrt{2}}, g_{n}(x)=\cos (n \pi x), h_{n}(x)=\sin (n \pi x)\right\} n=1,2,3, \ldots
$$

forms a maximal orthonormal system. Consider the linear subspace E consisting of all even functions, so

$$
E=\left\{f \in L^{2}([-1,1]) \mid f(x)=f(-x) \quad \text { for almost all } x \in[-1,1]\right\}
$$

(a) Prove $\left\{g_{0}, g_{n}\right\} n=1,2,3, \ldots$ is maximal orthonormal system in E
(b) Define the linear operator $A: L^{2}[-1,1] \rightarrow L^{2}[-1,1]$ by $(A f)(x)=$ $f(-x)$ for $f \in L^{2}[-1,1]$ and $x \in[-1,1]$. Show that A is bounded, find $\|A\|$
(c) Prove that E is a closed linear subspace of $L^{2}([-1,1])$. (hint: view E as being the null space of an operator)
3. Suppose H is a real Hilbert space and $\varphi: H \rightarrow R$ is a non-zero bounded linear functional.
(a) Prove that there is a $g \in(\mathcal{N}(\varphi))^{\perp}$ such that $\varphi(g)=1$.
(b) Let $f \in H$ with $\varphi(f)=1$ and $f \neq g$. Prove that $\|f\|>\|g\|$
(c) Find the real valued function $g \in L^{2}(0,1)$ such that $\int_{1 / 2}^{1} g(x) d x=1$ and $\int_{0}^{1}(g(x))^{2} d x$ minimal
4. Consider $A: L^{2}(0,1) \rightarrow L^{2}(0,1)$ given by

$$
(A f)(x)=\int_{0}^{1} e^{-i x-y} f(y) d y
$$

(a) Determine the adjoint A^{*} of A
(b) Prove that $\|A\|<1$
(c) Explain that the integral equation $f(x)-\int_{0}^{1} e^{-i x-y} f(y) d y=g(x)$ has a unique solution $f(x) \in L^{2}[0,1]$ for every choice $g(x) \in L^{2}[0,1]$
5. The linear operator $A: l^{2} \rightarrow l^{2}$ is given by

$$
A\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(\frac{1}{2} x_{2}, \frac{1}{2} x_{1}, \frac{1}{4} x_{4}, \frac{1}{4} x_{3}, \frac{1}{6} x_{6}, \frac{1}{6} x_{5}, \ldots\right)
$$

so

$$
(A x)_{2 n-1}=\frac{1}{2 n} x_{2 n} \quad \text { and } \quad(A x)_{2 n}=\frac{1}{2 n} x_{2 n-1}
$$

(a) Calculate A^{*}
(b) Find the spectrum $\sigma(A)$ of A (hint: take first a look at the eigenvalues of A)
6. Let $\left(a_{n}\right)_{n \in \mathbf{N}}$ be a sequence of complex numbers.
(a) Show that the operator $A: l^{2} \rightarrow l^{2}$ with $A\left(x_{1}, x_{2}, \ldots\right)=\left(a_{1} x_{1}, a_{2} x_{2}, \ldots\right)$ is densely defined and closed
(b) For what choices of $\left(a_{n}\right)$ is A an unbounded operator?
(c) Determine the domain of A^{*} and $A^{*}\left(y_{1}, y_{2}, \ldots\right)$

GRADING POINTS | $1 .(\mathrm{a}) 2$ | $2 .(\mathrm{a}) 2$ | $3 .(\mathrm{a}) 2$ | $4 .(\mathrm{a}) 2$ | $5 .(\mathrm{a}) 2$ | $6 .(\mathrm{a}) 2$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| (b) 2 | (b) 2 | (b) 2 | (b) 2 | (b) 3 | $\overline{(\mathrm{~b}) 2}$ |
| (c)3 | (c) 2 | (c) 3 | (c)1 | | $\overline{(\mathrm{c}) 2}$ |

Total: $36+4=40$ points.

