## Applied Functional Analysis (191506302)

Tuesday, January 25, 2011, 08.45-11.45

- An explanation to every answer is required
- You can make use of a calculator
- (Part of) the score to exercises 2 and 3(c) may be earned by homeworks; see the score table at the end

1. We define the space $F$ of all 'finite sequences of real numbers' as follows:

$$
F=\left\{\underline{x}=\left(x_{1}, x_{2}, \ldots .\right) \mid x_{n} \in \mathbb{R}, \text { there exist an } N \text { such that } x_{n}=0 \text { for } n>N\right\}
$$

View $F$ as a linear subspace of the vector space $l^{1}$, but we define an alternative norm on $F$ :

$$
\|\underline{x}\|=\sum_{n=1}^{\infty}\left|n x_{n}\right|
$$

(a) Check that $\|\|$ indeed defines a norm on F
(b) Show that $(F,\| \|)$ is not a Banach space
(c) Describe the completion $E$ of $(F,\| \|)$ as a special subset of $l^{1}$ and prove your choice
2. The (complex) inner product space $C^{1}([0,1])$ consists of all differentiable functions $f:[0,1] \rightarrow \mathbb{C}$ with the natural vector space structure for functions and with

$$
(f, g)=f(0) \overline{g(0)}+\int_{0}^{1} f^{\prime}(x) \overline{g^{\prime}(x)} d x
$$

(a) Check that (, ) defines a complex inner product
(b) The norm induced be (, ) is denoted as $\|\|$. Give an expression for $(f, g)$ in terms of $\|\|$.
(c) Let $h(x)=x+i x^{2}$ for $x \in[0,1]$. Determine $\{h\}^{\perp}$
3. Consider the boundary-value problem for $y$ :

$$
\left\{\begin{aligned}
y^{\prime}-y & =f \\
y(0) & =0
\end{aligned}\right.
$$

where $f$ is a given function in $L^{2}(0,1)$.
(a) Show that $y(x)=\int_{0}^{x} e^{x-t} \cdot f(t) d t$ is a solution to the problem.

Define the integral operator $A: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by $A g(x)=\int_{0}^{1} k(x, t) g(t) d t$ for $g \in L^{2}(0,1)$ where

$$
k(x, t)= \begin{cases}e^{x-t} & \text { if } 0 \leq t<x \leq 1 \\ 0 & \text { if } 0 \leq x \leq t \leq 1\end{cases}
$$

(b) Show that $y(x)$ from (a) equals $A f(x)$
(c) Prove that $A$ is bounded
4. The linear operator on the real normed vector space $l^{2}$ is given by $A(\underline{b})=\left(b_{2}, b_{2}, b_{4}, b_{4}, b_{6}, b_{6}, \ldots\right)$ if $\underline{b}=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$.
(a) Show that $A$ is bounded and determine $\|A\|$
(b) Calculate $A^{*}$ and $A^{2}$
(c) Is $A$ a compact operator? Explain your answer
(d) Determine all eigenvalues of $A$
5. Let $A: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be the kernel operator $A f(x)=\int_{0}^{1} k(x, y) f(y) d y$ with kernel

$$
k(x, y)=\left\{\begin{array}{l}
y(1-x) \text { if } 0 \leq y \leq x \leq 1 \\
x(1-y) \text { if } 0 \leq x \leq y \leq 1
\end{array}\right.
$$

It is known that the eigenvalues of $A$ are the numbers $\lambda_{n}=\frac{1}{n^{2} \pi^{2}}$ with corresponding eigenfunctions

$$
g_{n}(x)=\frac{1}{\sqrt{2}} \sin (n \pi x) \text { for } n=1,2,3, \ldots
$$

(a) Prove that for a given $g \in L^{2}[0,1]$ the solution of

$$
\left\{\begin{array}{l}
u^{\prime \prime}=-g \\
u(0)=0, u(1)=0
\end{array}\right.
$$

is given by $u=A g$
(b) Show that for $\lambda \in \mathbb{C}, \lambda \neq 0$ and given $g \in L^{2}[0,1]$ we have

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda u=g \\
u(0)=0, u(1)=0
\end{array} \Longleftrightarrow\left(A-\frac{1}{\lambda} \mathrm{Id}\right) u=\frac{1}{\lambda} A g\right.
$$

(c) Determine for which $\lambda \in \mathbb{C}$ the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda u=g \\
u(0)=0, u(1)=0
\end{array}\right.
$$

has a unique solution for a given $g$, and describe this solution in terms of $g$ and $g_{n}$.

GRADING POINTS
Total: $36+4=40$ points

| $1 .(\mathrm{a}) 2$ | $2 .(\mathrm{a}) 2$ | $3 .(\mathrm{a}) 3$ | $4 .(\mathrm{a}) 2$ | $5 .(\mathrm{a}) 3$ |
| :---: | :---: | :---: | :---: | :---: |
| (b) 2 |
| (c) 2 | (c) 2 | (c) 3 | (c) 2 | (c) 3 |
|  |  |  | (d) 2 |  |

