Applied Functional Analysis (191506302)

Tuesday, January 25, 2011, 08.45-11.45

- An explanation to every answer is required
- You can make use of a calculator
- (Part of) the score to exercises 2 and 3(c) may be earned by homeworks; see the score table at the end
- 1. We define the space F of all 'finite sequences of real numbers' as follows:

 $F = \{\underline{x} = (x_1, x_2, \dots) | x_n \in \mathbb{R}, \text{ there exist an } N \text{ such that } x_n = 0 \text{ for } n > N \}$

View F as a linear subspace of the vector space l^1 , but we define an alternative norm on F:

$$\|\underline{x}\| = \sum_{n=1}^{\infty} |nx_n|$$

- (a) Check that $\| \|$ indeed defines a norm on F
- (b) Show that $(F, \parallel \parallel)$ is not a Banach space
- (c) Describe the completion E of $(F, \parallel \parallel)$ as a special subset of l^1 and prove your choice
- 2. The (complex) inner product space $C^1([0,1])$ consists of all differentiable functions $f:[0,1] \to \mathbb{C}$ with the natural vector space structure for functions and with

$$(f,g) = f(0)\overline{g(0)} + \int_0^1 f'(x)\overline{g'(x)}dx$$

- (a) Check that (,) defines a complex inner product
- (b) The norm induced be (,) is denoted as $\parallel \parallel.$ Give an expression for (f,g) in terms of $\parallel \parallel.$
- (c) Let $h(x) = x + ix^2$ for $x \in [0, 1]$. Determine $\{h\}^{\perp}$
- 3. Consider the boundary-value problem for y:

$$\begin{cases} y' - y = f \\ y(0) = 0 \end{cases}$$

where f is a given function in $L^2(0, 1)$.

(a) Show that $y(x) = \int_0^x e^{x-t} \cdot f(t)dt$ is a solution to the problem. Define the integral operator $A: L^2(0,1) \to L^2(0,1)$ by $Ag(x) = \int_0^1 k(x,t)g(t)dt$ for $g \in L^2(0,1)$ where

$$k(x,t) = \begin{cases} e^{x-t} & \text{if } 0 \le t < x \le 1\\ 0 & \text{if } 0 \le x \le t \le 1 \end{cases}$$

- (b) Show that y(x) from (a) equals Af(x)
- (c) Prove that A is bounded
- 4. The linear operator on the real normed vector space l^2 is given by $A(\underline{b}) = (b_2, b_2, b_4, b_4, b_6, b_6, ...)$ if $\underline{b} = (b_1, b_2, b_3, ...)$.
 - (a) Show that A is bounded and determine ||A||
 - (b) Calculate A^* and A^2
 - (c) Is A a compact operator? Explain your answer
 - (d) Determine all eigenvalues of A
- 5. Let $A: L^2[0,1] \to L^2[0,1]$ be the kernel operator $Af(x) = \int_0^1 k(x,y)f(y)dy$ with kernel

$$k(x,y) = \begin{cases} y(1-x) \text{ if } 0 \le y \le x \le 1\\ x(1-y) \text{ if } 0 \le x \le y \le 1 \end{cases}$$

It is known that the eigenvalues of A are the numbers $\lambda_n = \frac{1}{n^2 \pi^2}$ with corresponding eigenfunctions

$$g_n(x) = \frac{1}{\sqrt{2}}\sin(n\pi x)$$
 for $n = 1, 2, 3, \dots$

(a) Prove that for a given $g \in L^2[0,1]$ the solution of

$$\begin{cases} u'' = -g\\ u(0) = 0, u(1) = 0 \end{cases}$$

is given by u = Ag

(b) Show that for $\lambda \in \mathbb{C}, \lambda \neq 0$ and given $g \in L^2[0,1]$ we have

$$\begin{cases} u'' + \lambda u = g\\ u(0) = 0, u(1) = 0 \end{cases} \iff (A - \frac{1}{\lambda} \mathrm{Id})u = \frac{1}{\lambda} Ag$$

(c) Determine for which $\lambda \in \mathbb{C}$ the problem

$$\begin{cases} u'' + \lambda u = g\\ u(0) = 0, u(1) = 0 \end{cases}$$

has a unique solution for a given g, and describe this solution in terms of g and g_n .

GRADING POINTS Total: 36+4=40 points

1.(a)2	2.(a)2	3.(a)3	4.(a)2	5.(a)3
(b)2	(b)2	(b)2	(b)2	(b)2
(c)2	(c)2	(c)3	(c)2	(c)3
			(d)2	