Applied Functional Analysis (191506302)

Tuesday, January 31, 2012,

08.45-11.45

- · An explanation to every answer is required
- · You can make use of a calculator
- (Part of) the score to exercises 3(b), 3(c), and 5(d) may be earned by homeworks;
 see the score table at the end
- 1. The linear space C[0,1] of continuous real functions on the interval [0,1] is endowed with

$$||f||_{\infty} = \max_{0 \le t \le 1} |f(t)|$$

and with

$$||f|| = |f(0)| + \int_0^1 |f(t)| dt$$

- (a) Show that ||f|| defines a norm on C[0,1].
- (b) Prove that $\|\ \|_{\infty}$ and $\|\ \|$, are non-equivalent norms on C[0,1].
- (c) Give an example of a linear functional $A: C[0,1] \longrightarrow \mathbb{R}$ which is continuous with respect to $\| \cdot \|_{\infty}$, but not with respect to $\| \cdot \|_{\infty}$.
- (d) From the course it is known that C[0,1] endowed with $\| \|_{\infty}$ is a Banach space. Is C[0,1] also complete with respect to $\| \|$?
- 2. By $L^2(0, 2\pi)$ we denote the real vector space of all (classes of) real square-integrable functions on $(0, 2\pi)$, endowed with the usual inner product

$$(f,g) = \int_{x=0}^{2\pi} f(x)g(x)dx$$

Let D be the closed linear subspace, $D = \{ f \in L^2(0, 2\pi) | \int_0^{2\pi} f(x) dx = 0 \}$.

- (a) Determine D^{\perp} (the 'orthoplement' of D in $L^{2}(0, 2\pi)$).
- (b) Find the best approximation in D to $g(x) = x^2$.
- (c) Find $f \in L^2(0, 2\pi)$ with minimal norm satisfying both $\int_0^{2\pi} f(x) dx = 1$ as well as $\int_0^{2\pi} x f(x) dx = 1$.

During the course it was demonstrated that $\{g_0, g_1, h_1, g_2, h_2, ...\}$, (with $g_0(x) = \frac{1}{\sqrt{2\pi}}$, $g_k(x) = \frac{1}{\sqrt{\pi}}\cos(kx)$, $h_k(x) = \frac{1}{\sqrt{\pi}}\sin(kx)$) is a maximal orthonormal system (MOS) for $L^2(0, 2\pi)$.

- (d) Give a MOS for the subspace D.
- 3. By $l_{\mathbb{C}}^2$ we denote the normed complex vector space of all sequences $\underline{a} = (a_1, a_2, ...)$ of complex numbers for $\|\underline{a}\| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}$ is finite. Let $A: l_{\mathbb{C}}^2 \longrightarrow l_{\mathbb{C}}^2$ be linear and bounded.
 - (a) Prove : if $A:l^2_{\mathbb C}\longrightarrow l^2_{\mathbb C}$ is compact, then the adjoint A^* is also compact.
 - (b) Suppose $A(\underline{a}) = (\lambda_1 a_1, \lambda_2 a_2, ...)$ is a 'multiplication' operator with $\lambda_n \in \mathbb{C}$. Prove: A is compact if and only if $\lim_{n\to\infty} \lambda_n = 0$.
 - (c) Give an example of a non-compact A for which A² is compact.
- 4. The real linear space l^{∞} of bounded sequences is normed by $\|(a_1, a_2, ...)\| = \sup_{n \in \mathbb{N}} |a_n|$. Define the 'Hardy' action $A(a_1, a_2, a_3, ...) = \left(a_1, \frac{a_1 + a_2}{2}, \frac{a_1 + a_2 + a_3}{3}, ...\right)$ so $A(\underline{a})_n = \frac{a_1 + a_2 + ... + a_n}{n}$.
 - (a) Show that A defines a linear operator $l^{\infty} \longrightarrow l^{\infty}$.
 - (b) Is A bounded or unbounded?
- 5. Let C denote the complex Banach space of all continuous complex valued functions on [0,1], equipped with $||f||_{\infty} = \sup_{0 \le t \le 1} |f(t)|$. The linear map $A: C \longrightarrow C$ is defined by $Af(x) = \int_0^x (x-y)f(y)dy$ for all $f \in C$ and $0 \le x \le 1$.
 - (a) Show that A is bounded.
 - (b) Show that $|A^n f(x)| \leq \frac{\|f\|_{\infty}}{n!} x^n$ for all $f \in C$, $n \in \mathbb{N}$ and $x \in [0, 1]$.
 - (c) Prove that (Id A) is invertible.
 - (d) Determine the spectrum of A.

GRADING POINTS

Total: 36+4=40 points

1.(a)2	2.(a)1	3.(a)2	4.(a)2	5.(a)2
(b)2	(b)2	(b) <u>3</u>	(b)2	(b)2
(c)2	(c)2	(c) <u>3</u>		(c)2
(d)2	(d)2			(d) <u>3</u>