Course : Applied Functional Analysis (191506302)

Date: Tuesday, January 28, 2014

Time : **08:45 - 11:45**

· An explanation to every answer is required

- · You can make use of a calculator
- (Part of) the score to excercises 3 and 6 may be earned by homeworks; see the score table at the end
- 1. The operator $A: L^2(-\infty,\infty) \to L^2(-\infty,\infty)$ is defined by

$$(Af)(x) = f(2x)$$
 for all $x \in \mathbb{R}$

Here $L^2(-\infty,\infty)$ is the space of classes of squared integrable functions

- (a) Show that A is linear
- (b) Determine ||A||
- (c) Find the adjoint of A
- 2. Let H be a Hilbert space with inner product < , > and nulvector 0. A sequence $(\mathbf{x}_n)_n \subset H$ is said to *converge weakly* to a vector $\mathbf{x} \in H$ if

$$<\mathbf{x}_n,\mathbf{y}> \to <\mathbf{x},\mathbf{y}> \text{ as } n\to \infty \text{ for all }\mathbf{y}\in H$$

In this case x is called a *weak limit* of the sequence $(x_n)_n$

- (a) Show that if $\mathbf{x}_n \to \mathbf{x}$ in norm, then $\mathbf{x}_n \to \mathbf{x}$ weakly
- (b) Let e_n be the n-th unit vector of ℓ^2 . Show that $e_n \to 0$ weakly, but not in norm.
- (c) Show that if $x_n \to x$ weakly and $||x_n|| \to ||x||$, then $x_n \to x$ in norm.
- (d) Let $\mathbf{x}_n \to \mathbf{x}$ weakly and $T \in BL(H)$. Show that $T\mathbf{x}_n \to T\mathbf{x}$ weakly
- 3. As in our course C[0,1] denotes the real vector space of continuous functions on [0,1] with the maximum norm. And ℓ^{∞} consists of all bounded (real) sequences with the supremum norm.
 - (a) Let $A: C[0,1] \to \ell^{\infty}$ the linear map defined by

$$Af = (f(1), f(\frac{1}{2}), f(\frac{1}{3}), f(\frac{1}{4}), \dots)$$

What is the range of A?

- (b) Give a vector $\neq 0$ in the null space of A.
- (c) Does there exist a linear map $B: \ell^{\infty} \to C[0,1]$ with $||B(\mathbf{x})|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \ell^{\infty}$. If so , define such a map; if not, motivate the non-existence.
- 4. The operator $T:C([0,1])\to C([0,1])$ is defined by

$$Tf(x) = \int_{y=0}^{1} k(x,y)f(y)dy$$

where k(x,y) is a continuous function with $\sup_{0 \le x,y \le 1} |k(x,y)| < 1$. Again C[0,1] is endowed with max-norm.

- (a) Prove that ||T|| < 1
- (b) Show that the integral equation f(x) Tf(x) = g(x) has a unique solution f for every $g \in C[0,1]$.
- (c) Solve the equation

$$f(x) - \int_0^1 \frac{1}{2} xy f(y) dy = x$$

5. We define the operate $A:\ell^2_{\mathbb C} \to \ell^2_{\mathbb C}$ by

$$A(a_1, a_2, a_3, \dots) = (ia_2, -ia_1, \frac{1}{2}ia_4, -\frac{1}{2}ia_3, \frac{1}{3}ia_6, \dots)$$

in formula $(A\mathbf{a})_{2n-1}=\frac{1}{n}ia_{2n}$ and $(A\mathbf{a})_{2n}=-\frac{1}{n}ia_{2n-1}$

- (a) Prove that A is self-adjoint.
- (b) Prove that *A* is compact.
- (c) Determine the spectrum of $\sigma(A)$ of A.
- 6. Formulate the theorem of Hahn-Banach for a Banach space.

Grading points:

- 1. (a) 2 2. (a) 2 3. (a) 2 4. (a) 2 5. (a) 2 6 3
 - (b) 2 (b) 2 (b) 2 (b) 2
 - (c) 2 (c) 2 (c) 3 (c) 2
 - (d) 2