Exam: Continuous Optimisation 2014

3TU- and LNMB-course, Utrecht. Monday 26th January 2015

1. Given a convex set $\mathcal{F} \subset \mathbb{R}^n$ and a convex C^1 -function $f : \mathcal{F} \to \mathbb{R}$, consider the [4 points] program:

 $(P) \quad \min \ f(x) \qquad \text{s.t.} \qquad x \in \mathcal{F}.$

Show for $\overline{x} \in \mathcal{F}$:

 \overline{x} is a (global) minimizer of (P) if and only if $\nabla f(\overline{x})^T (x - \overline{x}) \ge 0 \ \forall x \in \mathcal{F}$ holds.

2. (a) Consider the simple linear program:

 $(P) \quad \min_{x \in \mathbb{R}} -x \quad \text{s.t.} \quad x - 1 \le 0 \;.$

Look at the Wolfe dual (WD) of (P) and determine all solutions (\bar{x}, \bar{y}) of (WD). Prove in this way that strong duality, v(WD) = v(P), holds and show that not all solutions (\bar{x}, \bar{y}) of (WD) correspond to KKT points of (P) (not all points \bar{x} are feasible).

(b) For the convex program

(CO) $\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad g_j(x) \le 0, \ j = 1, \dots, m ,$

with convex functions $f, g_j \in C^1(\mathbb{R}^n, \mathbb{R})$ show:

If the feasible point \overline{x} satisfies the KKT-conditions with a multiplier vector $\overline{y} \ge 0$ then $(\overline{x}, \overline{y})$ is a solution of the Wolfe dual (WD).

- (c) For the program (CO) in (b) show for the values v(WD) of Wolfe's dual and [3 points] v(D) of the Lagrangean dual that we have: $v(WD) \le v(D)$
- 3. Consider the problem:

(P)
$$\min_{x \in \mathbb{R}^2} (x_1 + 1)^2 + x_2^2$$
 s.t. $x_2 - x_1^3 \le 0$
 $-x_1 - x_2 \le 0$

- (a) Sketch the feasible set \mathcal{F} of (P). Show that at any feasible point $x \in \mathcal{F}$ the [2 points] linear independency constraint qualification (LICQ) holds.
- (b) Show that for $\overline{x} = (0,0)$ the Karush-Kuhn-Tucker conditions are satisfied. [4 points]
- (c) Show that $\overline{x} = (0,0)$ is a strict local minimizer of order p = 1. Also prove [3 points] (in detail) that \overline{x} is the unique global minimizer?

1

[3 points]

[4 points]

4. Let $\mathcal{K}_1 \subset \mathbb{R}^n$ be a proper cone and let $A \in \mathbb{R}^{n \times n}$ be given.

Show that if A has (full) rank n, then $\mathcal{K}_2 = \{A\mathbf{x} \mid \mathbf{x} \in \mathcal{K}_1\}$ is a proper cone. You may assume that \mathcal{K}_2 is closed.

5. Consider the following one dimensional optimisation problem:

$$\begin{array}{ll}
\min_{x} & 2x^2 - 2x \\
\text{s.t.} & x^2 \ge 1
\end{array}$$
(1)

Monday 26th January 2015

- (a) Sketch this problem. Using this sketch find its optimal solution, x^* , and its [2 points] optimal value, v(1).
- (b) Give the standard sum-of-squares approximation for this problem with d = 2. [3 points]
- (c) For a degree two polynomial $h_0(x) = ax^2 + bx + c$, give a positive semidefinite [3 points] constraint which is equivalent to the constraint that $h_0 \in \Sigma_2$. This is similar to the fact that for a degree zero polynomial $h_1(x) = a$, we have that $h_1 \in \Sigma_0$ if and only if $a \ge 0$.
- (d) Given that $(x-1)^2 \in \Sigma_2$ and $1 \in \Sigma_0$, find a lower bound on the optimal value [1 point] of the problem from part (b).

5

6 Total

6. (Automatic additional points)

Question: $\begin{vmatrix} 1 \\ 2 \\ 3 \\ 4 \end{vmatrix}$

A copy of the lecture-sheets may be used during the examination. Good luck!

Exam: Continuous Optimisation 2014

[4 points]

[4 points]