Exam: Continuous Optimisation 2014

3TU- and LNMB-course, Utrecht.

Monday $26^{\text {th }}$ January 2015

1. Given a convex set $\mathcal{F} \subset \mathbb{R}^{n}$ and a convex C^{1}-function $f: \mathcal{F} \rightarrow \mathbb{R}$, consider the program:
(P) $\min f(x) \quad$ s.t. $\quad x \in \mathcal{F}$.

Show for $\bar{x} \in \mathcal{F}$:
\bar{x} is a (global) minimizer of (P) if and only if $\nabla f(\bar{x})^{T}(x-\bar{x}) \geq 0 \forall x \in \mathcal{F}$ holds.
2. (a) Consider the simple linear program:

$$
\text { (P) } \min _{x \in \mathbb{R}}-x \quad \text { s.t. } \quad x-1 \leq 0 \text {; }
$$

Look at the Wolfe dual (WD) of (P) and determine all solutions (\bar{x}, \bar{y}) of (WD). Prove in this way that strong duality, $v(W D)=v(P)$, holds and show that not all solutions (\bar{x}, \bar{y}) of (WD) correspond to KKT points of (P) (not all points \bar{x} are feasible).
(b) For the convex program

$$
(C O) \quad \min _{x \in \mathbb{R}^{n}} f(x) \text { s.t. } \quad g_{j}(x) \leq 0, j=1, \ldots, m
$$

with convex functions $f, g_{j} \in C^{\mathbf{1}}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ show:
If the feasible point \bar{x} satisfies the KKT-conditions with a multiplier vector $\bar{y} \geq 0$ then (\bar{x}, \bar{y}) is a solution of the Wolfe dual (WD).
(c) For the program (CO) in (b) show for the values $v(W D)$ of Wolfe's dual and $v(D)$ of the Lagrangean dual that we have: $\quad v(W D) \leq v(D)$
3. Consider the problem:

$$
\text { (P) } \quad \min _{x \in \mathbb{R}^{2}}\left(x_{1}+1\right)^{2}+x_{2}^{2} \quad \text { s.t. } \begin{array}{r}
x_{2}-x_{1}^{3} \leq 0 \\
-x_{1}-x_{2} \leq 0
\end{array}
$$

(a) Sketch the feasible set \mathcal{F} of (P). Show that at any feasible point $x \in \mathcal{F}$ the linear independency constraint qualification (LICQ) holds.
(b) Show that for $\bar{x}=(0,0)$ the Karush-Kuhn-Tucker conditions are satisfied.
(c) Show that $\bar{x}=(0,0)$ is a strict local minimizer of order $p=1$.

Also prove
4. Let $\mathcal{K}_{1} \subset \mathbb{R}^{n}$ be a proper cone and let $A \in \mathbb{R}^{n \times n}$ be given.

Show that if A has (full) rank n, then $\mathcal{K}_{2}=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathcal{K}_{1}\right\}$ is a proper cone.
You may assume that \mathcal{K}_{2} is closed.
5. Consider the following one dimensional optimisation problem:

$$
\begin{array}{cl}
\min _{x} & 2 x^{2}-2 x \tag{1}\\
\text { s.t. } & x^{2} \geq 1
\end{array}
$$

(a) Sketch this problem. Using this sketch find its optimal solution, x^{*}, and its optimal value, $\mathrm{v}(1)$.
(b) Give the standard sum-of-squares approximation for this problem with $d=2$.
(c) For a degree two polynomial $h_{0}(x)=a x^{2}+b x+c$, give a positive semidefinite constraint which is equivalent to the constraint that $h_{0} \in \Sigma_{2}$.
This is similar to the fact that for a degree zero polynomial $h_{1}(x)=a$, we have that $h_{1} \in \Sigma_{0}$ if and only if $a \geq 0$.
(d) Given that $(x-1)^{2} \in \Sigma_{2}$ and $1 \in \Sigma_{0}$, find a lower bound on the optimal value of the problem from part (b).
6. (Automatic additional points)

Question:	1	2	3	4	5	6	Total
Points:	4	10	9	4	9	4	40

A copy of the lecture-sheets may be used during the examination. Good luck!

