Ex. 4 Consider the problem (in connection with the design of a cylindrical can with height h, radius r and volume at least 2π such that the total surface area is minimal):

$$
(P): \quad \min f(h, r):=2 \pi\left(r^{2}+r h\right) \quad \text { s.t. }-\pi r^{2} h \leq-2 \pi, \quad(\text { and } h>0, r>0)
$$

(a) Compute a (the) solution (\bar{h}, \bar{r}) of the KKT conditions of (P). Show that (P) is not a convex optimization problem.
(b) Show that the solution (\bar{h}, \bar{r}) in (a) is a local minimizer. Why is it the unique global solution?

Hint: Use the sufficient optimality conditions

Solution:

(a) We first note that the functions $f(h, r)=2 \pi\left(r^{2}+r h\right)$ and $g(h, r):=-\pi r^{2} h+2 \pi$ are not convex (for $h>0$). For the objective function f,e.g., this follows by:

$$
\nabla f=2 \pi\binom{r}{2 r+h}, \quad \nabla^{2} f=2 \pi\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \quad \text { and thus: } \quad \operatorname{det} \nabla^{2} f<0
$$

We now consider the KKT condition: $(\nabla f=-\mu \nabla g, g \leq 0, \mu \cdot g=0)$
So consider: $\quad 2 \pi\binom{r}{2 r+h}=\mu \pi\binom{r^{2}}{2 r h} \quad(\star)$:
Case $\mu=0$: leads to $2 \pi\binom{r}{2 r+h}=0$ with solution $(h, r)=(0,0)$ which is not feasible.
Case $\mu>0$ and thus $\pi r^{2} h=2 \pi$:
The 2 equations in (\star) lead to $\mu=2 / r$ and then $2(2 r+h)=\frac{2}{r} 2 r h$ or $h=2 r$. By using the (active) constraint we find $\pi r^{2} h=2 \pi r^{3}=2 \pi$ with solution $r=1$. So the unique KKT solution is given by $(\bar{h}, \bar{r})=(2,1), \bar{\mu}=2$.
(b) (We apply the second order sufficient conditions to the nonconvex program (P)).

So we will show (for the cone of critical directions $C(\bar{h}, \bar{r})$):

$$
d^{T} \nabla^{2} L(\bar{h}, \bar{r}, \bar{\mu}) d>0 \quad \forall d \in C(\bar{h}, \bar{r}) \backslash\{0\} \quad(\star \star)
$$

We compute
$\nabla f(\bar{h}, \bar{r})=2 \pi\binom{1}{4}, \nabla g(\bar{h}, \bar{r})=-\pi\binom{1}{4}, \nabla^{2} L(\bar{h}, \bar{r}, \bar{\mu})=2 \pi\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)+2(-\pi)\left(\begin{array}{ll}0 & 2 \\ 2 & 4\end{array}\right)=-2 \pi\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$
and

$$
\begin{aligned}
C(\bar{h}, \bar{r}) & =\left\{d \in \mathbb{R}^{2} \mid \nabla f(\bar{h}, \bar{r})^{T} d \leq 0, \nabla g(\bar{h}, \bar{r})^{T} d \leq 0\right\} \\
& =\left\{d \in \mathbb{R}^{2} \left\lvert\,\binom{ 1}{4}^{T} d \leq 0\right.,-\binom{1}{4}^{T} d \leq 0\right\} \\
& =\left\{\left.\lambda\binom{-4}{1} \right\rvert\, \lambda \in \mathbb{R}\right\}
\end{aligned}
$$

For $d=\lambda(-4,1)^{T}, \lambda \neq 0$ we obtain (see $\left.(\star \star)\right)$:

$$
\lambda(-4,1)(-2 \pi)\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \lambda\binom{-4}{1}=\ldots=2 \lambda^{2} \pi 6>0 \quad \forall \lambda \neq 0 .
$$

So $(\bar{h}, \bar{r})=(2,1)$ is a local minimizer.
It is the unique (global) minimizer since the point is the only KKT point.
Note that since the linear independency constraint qualification holds (for $r, h>0$) any local minimizer must be a KKT point. Also note that for feasible $\|(h, r)\| \rightarrow \infty$ also $f \rightarrow \infty$ holds. (To show the latter fact is technically "involved" and was not expected to be done.)

