Test exam: Continuous Optimisation 2014

3TU- and LNMB-course, Utrecht. Monday 8th December 2014

- 1. Let $f : \mathbb{R}^m \to \mathbb{R}$ be a convex function f(y) on \mathbb{R}^m and let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ be given.
 - (a) Show that the function g(x) := f(Ax + b) is a convex function of x on \mathbb{R}^n . [3 points]
 - (b) Suppose that f is strictly convex. Show that then g(x) := f(Ax + b) is strictly [4 points] convex if and only if A has (full) rank n. *Hint:* Recall that f is strictly convex if for any y₁ ≠ y₂, 0 < λ < 1 it holds:

Hint: Recall that f is strictly convex if for any $y_1 \neq y_2$, $0 < \lambda < 1$ it holds: $f(\lambda y_1 + (1 - \lambda)y_2) < \lambda f(y_1) + (1 - \lambda)f(y_2).$

2. For given $S \subset \mathbb{R}^n$ we define the convex hull $\operatorname{conv}(S)$ by

$$\operatorname{conv}(S) = \left\{ x = \sum_{i=1}^{m} \lambda_i x_i \ \left| \begin{array}{c} \sum_{i=1}^{m} \lambda_i = 1; \ x_i \in S, \lambda_i \ge 0 \ \forall i; \ m \in \mathbb{N} \right. \right\}$$

Show that $\operatorname{conv}(S)$ is the smallest convex set containing S:

- (a) Show that the set conv(S) is convex.
- (b) Show that for any convex set C containing S we must have $\operatorname{conv}(S) \subset C$. [3 (*Hint: You may use without proof any Lemma, Theorem etc. from the course*)
- 3. Consider with $0 \neq c \in \mathbb{R}^n$ the program:

$$(P) \qquad \min_{x \in \mathbb{R}^n} c^T x \quad \text{s.t.} \quad x^T x \le 1$$

- (a) Show that $\overline{x} = -\frac{c}{\|c\|}$ is the minimizer of (P) with minimum value $v(P) = -\|c\|$. [2 points] $(\|x\|$ means here the Euclidian norm.)
- (b) Compute the solution \overline{y} of the Lagrangean dual (D) of (P). Show in this way [4 points] that for the optimal values strong duality holds, i.e., v(D) = v(P).

[3 points]

[3 points]

4. Consider the problem (in connection with the design of a cylindrical can with height h, radius r and volume at least 2π such that the total surface area is minimal):

 $(P): \quad \min \ f(h,r) := 2\pi (r^2 + rh) \quad \text{s.t.} \ -\pi r^2 h \le -2\pi, \quad (\text{and } h > 0, r > 0)$

- (a) Compute a (the) solution $(\overline{h}, \overline{r})$ of the KKT conditions of (P). Show that (P) [4 points] is not a convex optimization problem.
- (b) Show that the solution (\$\bar{h}\$, \$\bar{r}\$) in (a) is a local minimizer. Why is it the unique [3 points] global solution? *Hint: Use the sufficient optimality conditions*
- 5. Consider the closed set

$$\mathcal{K} = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + 2x_2 \ge 0 \text{ and } 3x_1 + x_2 \ge 0 \}$$

- (a) Prove that \mathcal{K} is a convex cone.[2 points](b) Prove that \mathcal{K} is full-dimensional.[1 point]
- (c) Prove that \mathcal{K} is pointed.
- (d) Find the dual cone to \mathcal{K} .
- 6. We will consider bounds to the optimal value of the following problem:

$$\min_{\mathbf{x}} \quad 5x_1^2 - 4x_1x_2 - 2x_1 + x_2^2 + 2
\text{s.t.} \quad \mathbf{x} \in \mathbb{R}^2.$$
(A)

- (a) Give an upper bound on the optimal value of problem (A). [1 point]
- (b) Formulate a sum-of-squares optimisation problem to give a lower bound on [1 point] the optimal value of problem (A).
- (c) For fixed $u \in \mathbb{R}$, consider the polynomial $f(\mathbf{x}) = 5x_1^2 4x_1x_2 2x_1 + x_2^2 + u$. [2 points] Write the constraint that f is a sum-of-squares polynomial explicitly as a positive semidefinite constraint.
- 7. (Automatic additional points)

Question:	1	2	3	4	5	6	7	Total
Points:	7	6	6	7	6	4	4	40

A copy of the lecture-sheets may be used during the examination. Good luck! [4 points]

- [2 points]
- [1 point]