Test exam: Continuous Optimisation 2014
 3TU- and LNMB-course, Utrecht.
 Monday $8^{\text {th }}$ December 2014

1. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a convex function $f(y)$ on \mathbb{R}^{m} and let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ be given.
(a) Show that the function $g(x):=f(A x+b)$ is a convex function of x on \mathbb{R}^{n}.
(b) Suppose that f is strictly convex. Show that then $g(x):=f(A x+b)$ is strictly convex if and only if A has (full) rank n.
Hint: Recall that f is strictly convex if for any $y_{1} \neq y_{2}, 0<\lambda<1$ it holds: $f\left(\lambda y_{1}+(1-\lambda) y_{2}\right)<\lambda f\left(y_{1}\right)+(1-\lambda) f\left(y_{2}\right)$.
2. For given $S \subset \mathbb{R}^{n}$ we define the convex hull $\operatorname{conv}(S)$ by

$$
\operatorname{conv}(S)=\left\{x=\sum_{i=1}^{m} \lambda_{i} x_{i} \mid \sum_{i=1}^{m} \lambda_{i}=1 ; x_{i} \in S, \lambda_{i} \geq 0 \forall i ; m \in \mathbb{N}\right\}
$$

Show that $\operatorname{conv}(S)$ is the smallest convex set containing S :
(a) Show that the set $\operatorname{conv}(S)$ is convex.
(b) Show that for any convex set C containing S we must have $\operatorname{conv}(S) \subset C$.
(Hint: You may use without proof any Lemma, Theorem etc. from the course)
3. Consider with $0 \neq c \in \mathbb{R}^{n}$ the program:
(P) $\quad \min _{x \in \mathbb{R}^{n}} c^{T} x \quad$ s.t. $\quad x^{T} x \leq 1$.
(a) Show that $\bar{x}=-\frac{c}{\|c\|}$ is the minimizer of (P) with minimum value $v(P)=-\|c\| . \quad$ [2 points] ($\|x\|$ means here the Euclidian norm.)
(b) Compute the solution \bar{y} of the Lagrangean dual (D) of (P). Show in this way that for the optimal values strong duality holds, i.e., $v(D)=v(P)$.
4. Consider the problem (in connection with the design of a cylindrical can with height h, radius r and volume at least 2π such that the total surface area is minimal):
$(P): \quad \min f(h, r):=2 \pi\left(r^{2}+r h\right) \quad$ s.t. $\quad-\pi r^{2} h \leq-2 \pi, \quad($ and $h>0, r>0)$
(a) Compute a (the) solution (\bar{h}, \bar{r}) of the KKT conditions of (P). Show that (P) is not a convex optimization problem.
(b) Show that the solution (\bar{h}, \bar{r}) in (a) is a local minimizer. Why is it the unique global solution?
Hint: Use the sufficient optimality conditions
5. Consider the closed set

$$
\mathcal{K}=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}+2 x_{2} \geq 0 \text { and } 3 x_{1}+x_{2} \geq 0\right\}
$$

(a) Prove that \mathcal{K} is a convex cone.
(b) Prove that \mathcal{K} is full-dimensional.
(c) Prove that \mathcal{K} is pointed.
(d) Find the dual cone to \mathcal{K}.
6. We will consider bounds to the optimal value of the following problem:

$$
\begin{array}{cl}
\min _{\mathbf{x}} & 5 x_{1}^{2}-4 x_{1} x_{2}-2 x_{1}+x_{2}^{2}+2 \tag{A}\\
\text { s.t. } & \mathbf{x} \in \mathbb{R}^{2} .
\end{array}
$$

(a) Give an upper bound on the optimal value of problem (A).
(b) Formulate a sum-of-squares optimisation problem to give a lower bound on the optimal value of problem (A).
(c) For fixed $u \in \mathbb{R}$, consider the polynomial $f(\mathbf{x})=5 x_{1}^{2}-4 x_{1} x_{2}-2 x_{1}+x_{2}^{2}+u$. Write the constraint that f is a sum-of-squares polynomial explicitly as a positive semidefinite constraint.
7. (Automatic additional points)

Question:	1	2	3	4	5	6	7	Total
Points:	7	6	6	7	6	4	4	40

A copy of the lecture-sheets may be used during the examination.

 Good luck!