Test exam: Continuous Optimisation 2015

3TU- and LNMB-course, Utrecht.
Monday $4^{\text {th }}$ December 2015

1. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a convex function $f(y)$ on \mathbb{R}^{m} and let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ be given.
(a) Show that the function $g(x):=f(A x+b)$ is a convex function of x on \mathbb{R}^{n}.
(b) Suppose that f is strictly convex. Show that then $g(x):=f(A x+b)$ is strictly convex if and only if A has (full) rank n.
Hint: Recall that f is strictly convex if for any $y_{1} \neq y_{2}, 0<\lambda<1$ it holds:
$f\left(\lambda y_{1}+(1-\lambda) y_{2}\right)<\lambda f\left(y_{1}\right)+(1-\lambda) f\left(y_{2}\right)$.

Solution:

(a) For $x_{1}, x_{2} \in \mathbb{R}^{n}, \lambda \in[0,1]$ we find:

$$
\begin{aligned}
g\left(\lambda x_{1}+(1-\lambda) x_{2}\right)= & f\left(A\left(\lambda x_{1}+(1-\lambda) x_{2}\right)+b\right) \\
= & f\left(\lambda A x_{1}+(1-\lambda) A x_{2}+\lambda b+(1-\lambda) b\right) \\
= & f\left(\lambda\left(A x_{1}+b\right)+(1-\lambda)\left(A x_{2}+b\right)\right) \\
f \text { is convex } \leq & \lambda f\left(A x_{1}+b\right)+(1-\lambda) f\left(A x_{2}+b\right) \\
& =\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)
\end{aligned}
$$

(b) " $\Leftarrow " \operatorname{rank}(A)=n$ implies: $x_{1} \neq x_{2} \Rightarrow A x_{1} \neq A x_{2}$.

As in (a) for $x_{1} \neq x_{2}, \lambda \in(0,1)$ we obtain:

$$
\begin{aligned}
g\left(\lambda x_{1}+(1-\lambda) x_{2}\right)= & f\left(\lambda\left(A x_{1}+b\right)+(1-\lambda)\left(A x_{2}+b\right)\right) \\
& \text { " } f \text { is strict convex, } A x_{1}+b \neq A x_{2}+b " \\
< & \lambda f\left(A x_{1}+b\right)+(1-\lambda) f\left(A x_{2}+b\right) \\
& =\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)
\end{aligned}
$$

$" \Rightarrow$ " Assume $\operatorname{rank}(A)<n$. Then there exist $x_{1} \neq x_{2}$ with $A x_{1}=A x_{2}$ and for any $\lambda \in(0,1)$ we obtain:

$$
\begin{aligned}
g\left(\lambda x_{1}+(1-\lambda) x_{2}\right) & =f\left(\lambda\left(A x_{1}+b\right)+(1-\lambda)\left(A x_{2}+b\right)\right)=f\left(A x_{1}+b\right) \\
" g\left(x_{1}\right)=g\left(x_{2}\right) " & =g\left(x_{1}\right)=\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right) .
\end{aligned}
$$

So g is not strictly convex.
2. For given $S \subset \mathbb{R}^{n}$ we define the convex hull $\operatorname{conv}(S)$ by

$$
\operatorname{conv}(S)=\left\{x=\sum_{i=1}^{m} \lambda_{i} x_{i} \mid \sum_{i=1}^{m} \lambda_{i}=1 ; x_{i} \in S, \lambda_{i} \geq 0 \forall i ; m \in \mathbb{N}\right\}
$$

Show that conv (S) is the smallest convex set containing S :
(a) Show that the set $\operatorname{conv}(S)$ is convex with $S \subset \operatorname{conv}(S)$.
(b) Show that for any convex set C containing S we must have $\operatorname{conv}(S) \subset C$.
(Hint: You may use without proof any Lemma, Theorem etc. from the course)

Solution:

(a) Take $x^{1}, x^{2} \in \operatorname{conv}(S), \lambda \in[0,1]\left(\right.$ with $x^{j}=\sum_{i=1}^{m_{j}} \lambda_{i}^{j} x_{i}^{j}, x_{i}^{j} \in S, \sum_{i=1}^{m_{j}} \lambda_{i}^{j}=1$, $\lambda_{i}^{j} \geq 0$ for $\left.j=1,2\right)$. Then we find:

$$
\lambda x^{1}+(1-\lambda) x^{2}=\sum_{i=1}^{m_{1}} \lambda \lambda_{i}^{1} x_{i}^{1}+\sum_{i=1}^{m_{2}}(1-\lambda) \lambda_{i}^{2} x_{i}^{2} \in \operatorname{conv}(S)
$$

since $\sum_{i=1}^{m_{1}} \lambda \lambda_{i}^{1}+\sum_{i=1}^{m_{2}}(1-\lambda) \lambda_{i}^{2}=1$ and "coefficients are ≥ 0 ". Note that (trivially) $S \subset \operatorname{conv}(S)$ holds.
(b) Let $S \subset C$ with convex C : Take any $x \in \operatorname{conv}(S)$, i.e., $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$ with $\lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1$ and $x_{i} \in S$ and thus $x_{i} \in C$. Since C is convex by Lem.2.5 (Jensen inequality) the convex combination x of points $x_{i} \in C$ is in C. $\operatorname{So} \operatorname{conv}(S) \subset C$.
3. Consider with $0 \neq c \in \mathbb{R}^{n}$ the program:

$$
(P) \quad \min _{x \in \mathbb{R}^{n}} c^{T} x \quad \text { s.t. } \quad x^{T} x \leq 1
$$

(a) Show that $\bar{x}=-\frac{c}{\|c\|}$ is the minimizer of (P) with minimum value $v(P)=-\|c\|$. ($\|x\|$ means here the Euclidian norm.)
(b) Compute the solution \bar{y} of the Lagrangean dual (D) of (P). Show in this way that for the optimal values strong duality holds, i.e., $v(D)=v(P)$.

Solution:

(a) Either show this "by a sketch". Or as follows (using Schwarz inequality): $\|x\| \leq 1$ implies: $c^{T} x \geq-\|c\|\|x\| \geq-\|c\|$, and " $c^{T} x=-\|c\|$ " holds iff $x=-\frac{c}{\|c\|}$
So $\bar{x}=-\frac{c}{\|c\|}$ is the minimizer with $v(P)=c^{T}\left(-\frac{c}{\|c\|}\right)=-\|c\|$.
(Alternatively find \bar{x} by solving the KKT-conditions.)
(b) The dual (D) is given by

$$
(D) \quad \max _{y \geq 0} \psi(y) \quad \text { where } \psi(y):=\min _{x \in \mathbb{R}^{n}} L(x, y)
$$

with Lagrangean function $L(x, y)=c^{T} x+y\left(x^{T} x-1\right)$.
We find for $y=0$: $\psi(0)=-\infty$.
for $y>0$: The minimizer x of $\psi(y)$ satisfies $\quad \nabla_{x} L(x, y)=c+2 y x=0$ or $x=-\frac{1}{2 y} c$. So (fill in)

$$
\psi(y)=-\frac{1}{2 y} c^{T} c+\frac{1}{4 y} c^{T} c-y=-\frac{1}{4 y} c^{T} c-y .
$$

To find an (unconstrained) maximizer of $\psi(y)$ for $y>0$ we solve

$$
\psi^{\prime}(y)=\frac{1}{4 y^{2}} c^{T} c-1=0 \quad \text { with solution } \quad \bar{y}=\frac{1}{2}\|c\| .
$$

So $v(D)=\psi(\bar{y})=-\|c\|=v(P)$.
4. Consider the problem (in connection with the design of a cylindrical can with height h, radius r and volume at least 2π such that the total surface area is minimal):
$(P): \quad \min f(h, r):=2 \pi\left(r^{2}+r h\right) \quad$ s.t. $\quad-\pi r^{2} h \leq-2 \pi, \quad($ and $h>0, r>0)$
(a) Compute a (the) solution (\bar{h}, \bar{r}) of the KKT conditions of (P). Show that (P) is not a convex optimization problem.
(b) Show that the solution (\bar{h}, \bar{r}) in (a) is a local minimizer. Why is it the unique global solution?
Hint: Use the sufficient optimality conditions

Solution:

(a) We first note that the functions $f(h, r)=2 \pi\left(r^{2}+r h\right)$ and $g(h, r):=$ $-\pi r^{2} h+2 \pi$ are not convex (for $h>0$). For the objective function f, e.g., this follows by:

$$
\nabla f=2 \pi\binom{r}{2 r+h}, \quad \nabla^{2} f=2 \pi\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \quad \text { and thus: } \quad \operatorname{det} \nabla^{2} f<0
$$

We now consider the KKT condition: $(\nabla f=-\mu \nabla g, g \leq 0, \mu \cdot g=0)$
So consider: $\quad 2 \pi\binom{r}{2 r+h}=\mu \pi\binom{r^{2}}{2 r h} \quad(\star)$:
Case $\mu=0$: leads to $2 \pi\binom{r}{2 r+h}=0$ with solution $(h, r)=(0,0)$ which is not feasible.

Case $\mu>0$ and thus $\pi r^{2} h=2 \pi$:
The 2 equations in (\star) lead to $\mu=2 / r$ and then $2(2 r+h)=\frac{2}{r} 2 r h$ or $h=2 r$. By using the (active) constraint we find $\pi r^{2} h=2 \pi r^{3}=2 \pi$ with solution $r=1$. So the unique KKT solution is given by $(\bar{h}, \bar{r})=(2,1), \bar{\mu}=2$.
(b) (We apply the second order sufficient conditions of Th. 5.9 to the nonconvex program (P)). So we will show (for the cone of critical directions $C(\bar{h}, \bar{r})$):

$$
d^{T} \nabla_{h, r}^{2} L(\bar{h}, \bar{r}, \bar{\mu}) d>0 \quad \forall d \in C(\bar{h}, \bar{r}) \backslash\{0\} \quad(\star \star)
$$

We compute

$$
\begin{aligned}
\nabla f(\bar{h}, \bar{r}) & =2 \pi\binom{1}{4}, \quad \nabla g(\bar{h}, \bar{r})=-\pi\binom{1}{4}, \\
\nabla^{2} L(\bar{h}, \bar{r}, \bar{\mu}) & =2 \pi\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)+2(-\pi)\left(\begin{array}{ll}
0 & 2 \\
2 & 4
\end{array}\right)=-2 \pi\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
C(\bar{h}, \bar{r}) & =\left\{d \in \mathbb{R}^{2} \mid \nabla f(\bar{h}, \bar{r})^{T} d \leq 0, \nabla g(\bar{h}, \bar{r})^{T} d \leq 0\right\} \\
& =\left\{d \in \mathbb{R}^{2} \left\lvert\,\binom{ 1}{4}^{T} d \leq 0\right.,-\binom{1}{4}^{T} d \leq 0\right\} \\
& =\left\{\left.\lambda\binom{-4}{1} \right\rvert\, \lambda \in \mathbb{R}\right\}
\end{aligned}
$$

For $d=\lambda(-4,1)^{T} \neq 0$, (i.e., $\lambda \neq 0$) we obtain (see ($(\star *)$):

$$
\lambda(-4,1)(-2 \pi)\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \lambda\binom{-4}{1}=\ldots=2 \lambda^{2} \pi 6>0 \quad \forall \lambda \neq 0
$$

So $(\bar{h}, \bar{r})=(2,1)$ is a local minimizer.
It is the unique (global) minimizer since the point is the only KKT point. Note that since the linear independency constraint qualification holds ($\nabla g=$ $-\pi\binom{r^{2}}{2 r h} \neq 0$, for $\left.r, h>0\right)$ any local minimizer must be a KKT point. Also note that for feasible $\|(h, r)\| \rightarrow \infty$ also $f \rightarrow \infty$ holds. (To show the latter fact is technically"involved" and was not expected to be done.)
5. Consider the closed set

$$
\mathcal{K}=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}+2 x_{2} \geq 0 \text { and } 3 x_{1}+x_{2} \geq 0\right\}
$$

(a) Prove that \mathcal{K} is a proper cone. [You may assume closure.]
(b) Find the dual cone to \mathcal{K}.

Solution:

(a) In order for a set to be a proper cone it most be a closed, convex, pointed full-dimensional cone. We will assume closure and prove the rest:

- Convex cone: Consider an arbitrary $\mathbf{x}, \mathbf{y} \in \mathcal{K}$ and $\lambda_{1}, \lambda_{2}>0$. From Theorem 1.3 of the conic optimisation part of the course, if we can show that $\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y} \in \mathcal{K}$ then we are done.
We have

$$
\begin{array}{lll}
x_{1}+2 x_{2} \geq 0, & 3 x_{1}+x_{2} \geq 0, & \lambda_{1}>0 \\
y_{1}+2 y_{2} \geq 0, & 3 y_{1}+y_{2} \geq 0, & \lambda_{2}>0
\end{array}
$$

This implies that

$$
\begin{aligned}
& \left(\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}\right)_{1}+2\left(\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}\right)_{2}=\lambda_{1}\left(x_{1}+2 x_{2}\right)+\lambda_{2}\left(y_{1}+2 y_{2}\right) \geq 0 \\
& 3\left(\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}\right)_{1}+\left(\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}\right)_{2}=\lambda_{1}\left(3 x_{1}+x_{2}\right)+\lambda_{2}\left(3 y_{1}+y_{2}\right) \geq 0
\end{aligned}
$$

Therefore $\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y} \in \mathcal{K}$.

- Full-dimensional: Using Definition 1.8, part 2 of the conic optimisation part of the course, this follows from the space being two dimensional and having two linearly independent vectors $\binom{1}{0},\binom{0}{1} \in \mathcal{K}$.
- Pointed: We will consider an arbitrary $\mathbf{x} \in \mathbb{R}^{2}$ such that $\pm \mathbf{x} \in \mathcal{K}$. Using Definition 1.7 of the conic optimisation part of the course, if we can then show that $\mathbf{x}=\mathbf{0}$ then we are done. We have

$$
\left.\left.\begin{array}{rl}
(\mathbf{x})_{1}+2(\mathbf{x})_{2} & \geq 0 \\
(-\mathbf{x})_{1}+2(-\mathbf{x})_{2} & \geq 0
\end{array}\right\} \quad \Rightarrow \quad x_{1}+2 x_{2}=0, ~ \begin{array}{rl}
3(\mathbf{x})_{1}+(\mathbf{x})_{2} & \geq 0 \\
3(-\mathbf{x})_{1}+(-\mathbf{x})_{2} & \geq 0
\end{array}\right\} \quad \Rightarrow \quad 3 x_{1}+x_{2}=0 .
$$

Therefore
$x_{1}=\frac{2}{5} \underbrace{\left(3 x_{1}+x_{2}\right)}_{=0}-\frac{1}{5} \underbrace{\left(x_{1}+2 x_{2}\right)}_{=0}=0, \quad x_{2}=\underbrace{\left(3 x_{1}+x_{2}\right)}_{=0}-3 \underbrace{x_{1}}_{=0}=0$.
(b) From Corollary 2.8 of the conic optimisation part of the course and the note on slide $10 / 31$ of the first lecture in the conic optimisation part of the course we have that

$$
\mathcal{K}^{*}=\mathrm{cl} \text { conic }\left\{\binom{1}{2},\binom{3}{1}\right\}=\operatorname{conic}\left\{\binom{1}{2},\binom{3}{1}\right\} .
$$

6. We will consider bounds to the optimal value of the following problem:

$$
\begin{array}{ll}
\min _{\mathbf{x}} & 5 x_{1}^{2}-4 x_{1} x_{2}-2 x_{1}+x_{2}^{2}+2 \\
\text { s.t. } & x_{1}^{2}+5 x_{2}^{2}-4 x_{1} x_{2}-8 x_{2}=4 \tag{A}\\
& \mathbf{x} \in \mathbb{R}^{2} .
\end{array}
$$

(a) Give a finite upper bound on the optimal value of problem (A).
(b) Formulate a positive semidefinite optimisation problem to give a lower bound
(c) Give the dual problem to the positive semidefinite optimisation problem you formulated in part (b) of this question.

Solution:

(a) To find an upper bound we can use any feasible point, $\widehat{\mathbf{x}}$. If we limit our search for a feasible point such that $\widehat{x}_{2}=0$ then we would have a feasible point if and only if $4=\widehat{x}_{1}^{2}+5 * 0^{2}-4 \widehat{x}_{1} * 0-8 * 0=\widehat{x}_{1}^{2}$. Therefore both $\widehat{\mathbf{x}}=(2,0)$ and $\widehat{\mathbf{x}}=(-2,0)$ are feasible points. We only need one point to give us an upper bound, and if we consider the feasible point $\widehat{\mathbf{x}}=(2,0)$ then this gives us the upper bound of

$$
\begin{aligned}
5 \widehat{x}_{1}^{2}-4 \widehat{x}_{1} \widehat{x}_{2}-2 \widehat{x}_{1}+\widehat{x}_{2}^{2}+2 & =5 * 2^{2}-4 * 2 * 0-2 * 2+0^{2}+2 \\
& =20-0-4+0+2 \\
& =18
\end{aligned}
$$

(b) Problem (A) is equivalent to

$$
\begin{array}{cl}
\min _{\mathbf{x}} & 5 x_{1}^{2}-4 x_{1} x_{2}-2 x_{1} x_{3}+x_{2}^{2}+2 x_{3}^{2} \\
\text { s.t. } & x_{1}^{2}+5 x_{2}^{2}-4 x_{1} x_{2}-8 x_{2} x_{3}=4 \\
& x_{3}^{2}=1, \quad \mathbf{x} \in \mathbb{R}^{3},
\end{array}
$$

which is in turn equivalent to

$$
\begin{aligned}
\min _{\mathbf{x}, X} & \left\langle\left(\begin{array}{ccc}
5 & -2 & -1 \\
-2 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right), X\right\rangle \\
\text { s.t. } & \left\langle\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & -4 \\
0 & -4 & 0
\end{array}\right), X\right\rangle=4 \\
& \left\langle\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), X\right\rangle=1 \\
& X=\mathbf{x x}^{T}, \quad \mathbf{x} \in \mathbb{R}^{3}
\end{aligned}
$$

A lower bound on this is then provided by solving the optimisation problem

$$
\begin{aligned}
\min _{\mathbf{x}, X} & \left\langle\left(\begin{array}{ccc}
5 & -2 & -1 \\
-2 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right), X\right\rangle \\
\text { s.t. } & \left\langle\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & -4 \\
0 & -4 & 0
\end{array}\right), X\right\rangle=4 \\
& \left\langle\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), X\right\rangle=1 \\
& X \in \mathcal{P S D}^{3} .
\end{aligned}
$$

(c) Considering slide $9 / 20$ of lecture 3 of the conic optimisation part of this course we have that the dual problem is

$$
\begin{aligned}
\underset{\mathbf{y}}{\max } & 4 y_{1}+y_{2} \\
\text { s.t. } & \left(\begin{array}{ccc}
5 & -2 & -1 \\
-2 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right)-y_{1}\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & -4 \\
0 & -4 & 0
\end{array}\right)-y_{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathcal{P S D}^{3} .
\end{aligned}
$$

7. (Automatic additional points)

Question:	1	2	3	4	5	6	7	Total
Points:	7	6	6	7	6	4	4	40

A copy of the lecture-sheets may be used during the examination.

Good luck!

