
Test exam: Continuous Optimisation 2015
3TU- and LNMB-course, Utrecht.

Monday 4th December 2015

1. Let f : Rm → R be a convex function f(y) on Rm and let A ∈ Rm×n, b ∈ Rm be
given.

(a) [3 points]Show that the function g(x) := f(Ax+ b) is a convex function of x on Rn.

(b) [4 points]Suppose that f is strictly convex. Show that then g(x) := f(Ax+ b) is strictly
convex if and only if A has (full) rank n.

Hint: Recall that f is strictly convex if for any y1 6= y2, 0 < λ < 1 it holds:
f(λy1 + (1− λ)y2) < λf(y1) + (1− λ)f(y2).

Solution:

(a) For x1, x2 ∈ Rn, λ ∈ [0, 1] we find:

g(λx1 + (1− λ)x2) = f(A(λx1 + (1− λ)x2) + b)

= f(λAx1 + (1− λ)Ax2 + λb+ (1− λ)b)

= f(λ(Ax1 + b) + (1− λ)(Ax2 + b))

f is convex ≤ λf(Ax1 + b) + (1− λ)f(Ax2 + b)

= λg(x1) + (1− λ)g(x2)

(b) “⇐” rank(A) = n implies: x1 6= x2 ⇒ Ax1 6= Ax2.
As in (a) for x1 6= x2, λ ∈ (0, 1) we obtain:

g(λx1 + (1− λ)x2) = f(λ(Ax1 + b) + (1− λ)(Ax2 + b))

“f is strict convex, Ax1 + b 6= Ax2 + b”

< λf(Ax1 + b) + (1− λ)f(Ax2 + b)

= λg(x1) + (1− λ)g(x2)

“⇒” Assume rank(A) < n. Then there exist x1 6= x2 with Ax1 = Ax2
and for any λ ∈ (0, 1) we obtain:

g(λx1 + (1− λ)x2) = f(λ(Ax1 + b) + (1− λ)(Ax2 + b)) = f(Ax1 + b)

“g(x1) = g(x2)” = g(x1) = λg(x1) + (1− λ)g(x2).

So g is not strictly convex.
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2. For given S ⊂ Rn we define the convex hull conv(S) by

conv(S) =

{
x =

m∑
i=1

λixi

∣∣∣∣ m∑
i=1

λi = 1; xi ∈ S, λi ≥ 0 ∀i; m ∈ N

}
Show that conv(S) is the smallest convex set containing S:

(a) [3 points]Show that the set conv(S) is convex with S ⊂ conv(S).

(b) [3 points]Show that for any convex set C containing S we must have conv(S) ⊂ C.
(Hint: You may use without proof any Lemma, Theorem etc. from the course)

Solution:

(a) Take x1, x2 ∈ conv(S), λ ∈ [0, 1] (with xj =
∑mj

i=1 λ
j
ix

j
i , xji ∈ S,

∑mj

i=1 λ
j
i = 1,

λji ≥ 0 for j = 1, 2). Then we find:

λx1 + (1− λ)x2 =

m1∑
i=1

λλ1ix
1
i +

m2∑
i=1

(1− λ)λ2ix
2
i ∈ conv(S)

since
∑m1

i=1 λλ
1
i +
∑m2

i=1(1− λ)λ2i = 1 and “coefficients are ≥ 0”. Note that
(trivially) S ⊂ conv(S) holds.

(b) Let S ⊂ C with convex C: Take any x ∈ conv(S), i.e., x =
∑m

i=1 λixi with
λi ≥ 0,

∑m
i=1 λi = 1 and xi ∈ S and thus xi ∈ C. Since C is convex by

Lem.2.5 (Jensen inequality) the convex combination x of points xi ∈ C is
in C. So conv(S) ⊂ C.

3. Consider with 0 6= c ∈ Rn the program:

(P ) min
x∈Rn

cTx s.t. xTx ≤ 1 .

(a) [2 points]Show that x = − c
‖c‖ is the minimizer of (P) with minimum value v(P ) = −‖c‖.

(‖x‖ means here the Euclidian norm.)

(b) [4 points]Compute the solution y of the Lagrangean dual (D) of (P). Show in this way
that for the optimal values strong duality holds, i.e., v(D) = v(P ).

Solution:

(a) Either show this “by a sketch”. Or as follows (using Schwarz inequality):

‖x‖ ≤ 1 implies: cTx ≥ −‖c‖‖x‖ ≥ −‖c‖, and “ cTx = −‖c‖” holds iff
x = − c

‖c‖

So x = − c
‖c‖ is the minimizer with v(P ) = cT (− c

‖c‖) = −‖c‖.
(Alternatively find x by solving the KKT-conditions.)
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(b) The dual (D) is given by

(D) max
y≥0

ψ(y) where ψ(y) := min
x∈Rn

L(x, y)

with Lagrangean function L(x, y) = cTx+ y(xTx− 1).
We find for y = 0: ψ(0) = −∞.
for y > 0: The minimizer x of ψ(y) satisfies ∇xL(x, y) = c+ 2yx = 0 or

x = − 1
2y
c. So (fill in)

ψ(y) = − 1

2y
cT c+

1

4y
cT c− y = − 1

4y
cT c− y .

To find an (unconstrained) maximizer of ψ(y) for y > 0 we solve

ψ′(y) =
1

4y2
cT c− 1 = 0 with solution y =

1

2
‖c‖ .

So v(D) = ψ(y) = −‖c‖ = v(P ).

4. Consider the problem (in connection with the design of a cylindrical can with height
h, radius r and volume at least 2π such that the total surface area is minimal):

(P ) : min f(h, r) := 2π(r2 + rh) s.t. − πr2h ≤ −2π, (and h > 0, r > 0)

(a) [4 points]Compute a (the) solution (h, r) of the KKT conditions of (P). Show that (P )
is not a convex optimization problem.

(b) [3 points]Show that the solution (h, r) in (a) is a local minimizer. Why is it the unique
global solution?
Hint: Use the sufficient optimality conditions

Solution:

(a) We first note that the functions f(h, r) = 2π(r2 + rh) and g(h, r) :=
−πr2h+ 2π are not convex (for h > 0). For the objective function f , e.g.,
this follows by:

∇f = 2π

(
r

2r + h

)
, ∇2f = 2π

(
0 1

1 2

)
and thus: det∇2f < 0

We now consider the KKT condition: (∇f = −µ∇g, g ≤ 0, µ · g = 0)

So consider: 2π
(

r
2r+h

)
= µπ

(
r2

2rh

)
(?):

Case µ = 0: leads to 2π
(

r
2r+h

)
= 0 with solution (h, r) = (0, 0) which is

not feasible.
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Case µ > 0 and thus πr2h = 2π:
The 2 equations in (?) lead to µ = 2/r and then 2(2r+h) = 2

r
2rh or h = 2r.

By using the (active) constraint we find πr2h = 2πr3 = 2π with solution
r = 1. So the unique KKT solution is given by (h, r) = (2, 1), µ = 2.

(b) (We apply the second order sufficient conditions of Th. 5.9 to the nonconvex
program (P)). So we will show (for the cone of critical directions C(h, r)):

dT∇2
h,rL(h, r, µ)d > 0 ∀d ∈ C(h, r) \ {0} (??)

We compute

∇f(h, r) = 2π

(
1

4

)
, ∇g(h, r) = −π

(
1

4

)
,

∇2L(h, r, µ) = 2π

(
0 1

1 2

)
+ 2(−π)

(
0 2

2 4

)
= −2π

(
0 1

1 2

)
and

C(h, r) = {d ∈ R2 | ∇f(h, r)Td ≤ 0,∇g(h, r)Td ≤ 0}

= {d ∈ R2 |
(

1

4

)T

d ≤ 0, −
(

1

4

)T

d ≤ 0}

= {λ
(
−4

1

)
| λ ∈ R}

For d = λ(−4, 1)T 6= 0, (i.e., λ 6= 0) we obtain (see (??)):

λ(−4, 1)(−2π)

(
0 1

1 2

)
λ

(
−4

1

)
= ... = 2λ2π6 > 0 ∀λ 6= 0 .

So (h, r) = (2, 1) is a local minimizer.
It is the unique (global) minimizer since the point is the only KKT point.
Note that since the linear independency constraint qualification holds (∇g =

−π
(
r2

2rh

)
6= 0, for r, h > 0) any local minimizer must be a KKT point. Also

note that for feasible ‖(h, r)‖ → ∞ also f →∞ holds. (To show the latter
fact is technically “involved” and was not expected to be done.)
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5. Consider the closed set

K = {x ∈ R2 | x1 + 2x2 ≥ 0 and 3x1 + x2 ≥ 0}

(a) [5 points]Prove that K is a proper cone. [You may assume closure.]

(b) [1 point]Find the dual cone to K.

Solution:

(a) In order for a set to be a proper cone it most be a closed, convex, pointed
full-dimensional cone. We will assume closure and prove the rest:

• Convex cone: Consider an arbitrary x,y ∈ K and λ1, λ2 > 0. From
Theorem 1.3 of the conic optimisation part of the course, if we can
show that λ1x + λ2y ∈ K then we are done.

We have

x1 + 2x2 ≥ 0, 3x1 + x2 ≥ 0, λ1 > 0,

y1 + 2y2 ≥ 0, 3y1 + y2 ≥ 0, λ2 > 0.

This implies that

(λ1x + λ2y)1 + 2(λ1x + λ2y)2 = λ1(x1 + 2x2) + λ2(y1 + 2y2) ≥ 0,

3(λ1x + λ2y)1 + (λ1x + λ2y)2 = λ1(3x1 + x2) + λ2(3y1 + y2) ≥ 0.

Therefore λ1x + λ2y ∈ K.

• Full-dimensional: Using Definition 1.8, part 2 of the conic optimisation
part of the course, this follows from the space being two dimensional

and having two linearly independent vectors

(
1
0

)
,

(
0
1

)
∈ K.

• Pointed: We will consider an arbitrary x ∈ R2 such that ±x ∈ K.
Using Definition 1.7 of the conic optimisation part of the course, if
we can then show that x = 0 then we are done. We have

(x)1 + 2(x)2 ≥ 0

(−x)1 + 2(−x)2 ≥ 0

}
⇒ x1 + 2x2 = 0,

3(x)1 + (x)2 ≥ 0

3(−x)1 + (−x)2 ≥ 0

}
⇒ 3x1 + x2 = 0.

Therefore

x1 = 2
5

(3x1 + x2)︸ ︷︷ ︸
=0

−1
5

(x1 + 2x2)︸ ︷︷ ︸
=0

= 0, x2 = (3x1 + x2)︸ ︷︷ ︸
=0

−3 x1︸︷︷︸
=0

= 0.
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(b) From Corollary 2.8 of the conic optimisation part of the course and the
note on slide 10/31 of the first lecture in the conic optimisation part of the
course we have that

K∗ = cl conic

{(
1
2

)
,

(
3
1

)}
= conic

{(
1
2

)
,

(
3
1

)}
.

6. We will consider bounds to the optimal value of the following problem:

min
x

5x21 − 4x1x2 − 2x1 + x22 + 2

s.t. x21 + 5x22 − 4x1x2 − 8x2 = 4

x ∈ R2.

(A)

(a) [1 point]Give a finite upper bound on the optimal value of problem (A).

(b) [2 points]Formulate a positive semidefinite optimisation problem to give a lower bound
on the optimal value of problem (A).

(c) [1 point]Give the dual problem to the positive semidefinite optimisation problem you
formulated in part (b) of this question.

Solution:

(a) To find an upper bound we can use any feasible point, x̂. If we limit our
search for a feasible point such that x̂2 = 0 then we would have a feasible
point if and only if 4 = x̂21 + 5 ∗ 02 − 4x̂1 ∗ 0− 8 ∗ 0 = x̂21. Therefore both
x̂ = (2, 0) and x̂ = (−2, 0) are feasible points. We only need one point to
give us an upper bound, and if we consider the feasible point x̂ = (2, 0)
then this gives us the upper bound of

5x̂21 − 4x̂1x̂2 − 2x̂1 + x̂22 + 2 = 5 ∗ 22 − 4 ∗ 2 ∗ 0− 2 ∗ 2 + 02 + 2

= 20− 0− 4 + 0 + 2

= 18

(b) Problem (A) is equivalent to

min
x

5x21 − 4x1x2 − 2x1x3 + x22 + 2x23

s.t. x21 + 5x22 − 4x1x2 − 8x2x3 = 4

x23 = 1, x ∈ R3,
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which is in turn equivalent to

min
x,X

〈 5 −2 −1
−2 1 0
−1 0 2

 , X

〉

s.t.

〈 1 −2 0
−2 5 −4
0 −4 0

 , X

〉
= 4

〈0 0 0
0 0 0
0 0 1

 , X

〉
= 1,

X = xxT , x ∈ R3,

A lower bound on this is then provided by solving the optimisation problem

min
x,X

〈 5 −2 −1
−2 1 0
−1 0 2

 , X

〉

s.t.

〈 1 −2 0
−2 5 −4
0 −4 0

 , X

〉
= 4

〈0 0 0
0 0 0
0 0 1

 , X

〉
= 1,

X ∈ PSD3.

(c) Considering slide 9/20 of lecture 3 of the conic optimisation part of this
course we have that the dual problem is

max
y

4y1 + y2

s.t.

 5 −2 −1
−2 1 0
−1 0 2

− y1
 1 −2 0
−2 5 −4
0 −4 0

− y2
0 0 0

0 0 0
0 0 1

 ∈ PSD3.

7. [4 points](Automatic additional points)

Question: 1 2 3 4 5 6 7 Total

Points: 7 6 6 7 6 4 4 40

A copy of the lecture-sheets may be used during the examination.
Good luck!
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