Exam: Continuous Optimisation 2015

3TU- and LNMB-course, Utrecht.
Monday $4^{\text {th }}$ January 2016

1. Let $f_{j}(x), j=1, \ldots, k(1 \leq k \in \mathbb{N})$, be convex functions defined on a convex set $\mathcal{C} \subset \mathbb{R}^{n}$.
(a) Consider with (given) $\alpha_{j} \geq 0, j=1, \ldots, k$, the function $f(x):=\sum_{j=1}^{k} \alpha_{j} f_{j}(x)$.

Show that f is convex on \mathcal{C}.
(b) Show that also $g(x):=\max _{1 \leq j \leq k}\left\{f_{j}(x)\right\}$ is a convex function on \mathcal{C}.

Solution:

(a) For $x, y \in \mathcal{C}, \lambda \in[0,1]$ we find using convexity of the f_{j} 's and $\alpha_{j} \geq 0$:

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & =\sum_{j=1}^{k} \alpha_{j} f_{j}(\lambda x+(1-\lambda) y) \\
f_{j} \text { convex, } \alpha_{j} \geq 0 & \leq \sum_{j=1}^{k} \alpha_{j}\left[\lambda f_{j}(x)+(1-\lambda) f_{j}(y)\right] \\
& =\lambda\left[\sum_{j=1}^{k} \alpha_{j} f_{j}(x)\right]+(1-\lambda)\left[\sum_{j=1}^{k} \alpha_{j} f_{j}(y)\right] \\
& =\lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

(b) For $x, y \in \mathcal{C}, \lambda \in[0,1]$ we find using convexity of the f_{j} 's:

$$
\begin{aligned}
g(\lambda x+(1-\lambda) y) & =\max _{1 \leq j \leq k}\left\{f_{j}(\lambda x+(1-\lambda) y)\right\} \\
& \leq \max _{1 \leq j \leq k}\left\{\lambda f_{j}(x)+(1-\lambda) f_{j}(y)\right\} \\
& \leq \lambda\left[\max _{1 \leq j \leq k} f_{j}(x)\right]+(1-\lambda) \max _{1 \leq j \leq k}\left\{f_{j}(y)\right\} \\
& =\lambda g(x)+(1-\lambda) g(y)
\end{aligned}
$$

where in the second \leq we used that "max of a positive sum of functions \leq positive sum of max of the functions".
2. Consider the convex program

$$
(C O) \quad \min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad x \in \mathcal{F}:=\left\{x \in \mathbb{R}^{n} \mid g_{j}(x) \leq 0, j=1, \ldots, m\right\}
$$

with convex functions $f, g_{j} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
Show that if $\bar{x} \in \mathcal{F}$ satisfies the KKT-conditions (Karush-Kuhn-Tucker conditions) for $(C O)$ with a multiplier vector $\bar{y} \geq 0$ then (\bar{x}, \bar{y}) is a saddle point for the Lagrangian function $L(x, y)$ of (CO).

Solution: KKT-conditions means that $\bar{x} \in \mathcal{F}$ satisfies with $\bar{y} \geq 0$,

$$
\left(\nabla_{x} L(\bar{x}, \bar{y})=\right) \quad \nabla f(\bar{x})+\sum_{j \in J} y_{j} \nabla g_{j}(\bar{x})=0 \quad \text { with } \bar{y}_{j} g_{j}(\bar{x})=0 \forall j \in J
$$

So (by Th. 3.4) \bar{x} is a global solution of $\min _{x \in \mathbb{R}^{n}} L(x, \bar{y})$ and thus

$$
L(\bar{x}, \bar{y}) \leq L(x, \bar{y}) \quad \forall x \in \mathbb{R}^{n}
$$

Moreover since \bar{x} is feasible, i.e., $g_{j}(\bar{x}) \leq 0 \forall j$, and using $\bar{y}_{j} g_{j}(\bar{x})=0$ we obviously obtain for all $y \geq 0$:

$$
L(\bar{x}, y)=f(\bar{x})+\sum_{j \in J} y_{j} g_{j}(\bar{x}) \leq f(\bar{x})=f(\bar{x})+\sum_{j \in J} \bar{y}_{j} g_{j}(\bar{x})=L(\bar{x}, \bar{y})
$$

Together with (\star) this shows that (\bar{x}, \bar{y}) is a saddle point of L.
3. Consider the two problems

$$
\begin{array}{llll}
\left(P_{1}\right) & \min _{x \in \mathbb{R}^{2}} f(x) & \text { s.t. } & g_{1}(x):=x_{1}^{2}-x_{2} \leq 0 \\
\left(P_{2}\right) & \min _{x \in \mathbb{R}^{2}} f(x) & \text { s.t. } & g_{2}(x):=-x_{1}^{2}-x_{2} \leq 0
\end{array}
$$

both with the same objective $f(x)=2 x_{1}^{2}+x_{2}$.
(a) Which of these programs $\left(P_{1}\right),\left(P_{2}\right)$ is a convex problem? Sketch for both problems the feasible set and the level set of f given by $f(x)=f(0,0)$.
(b) Determine for both programs a (the) KKT-point \bar{x} with corresponding Lagrangean multiplier $\bar{\mu}$.
(c) Show for both problems that \bar{x} is a (local) minimizer. Is it a global minimizer?

Solution:

(a) f, g_{1} are convex (e.g., show that Hessian is pos. semidef.). But g_{2} is not convex, $\nabla^{2} g_{2}(x)=\left(\begin{array}{rr}-2 & 0 \\ 0 & 0\end{array}\right)$ is not positive semidefinite. So $\left(P_{1}\right)$ is convex, $\left(P_{2}\right)$ is not. (Give two complete sketches).
(b) The KKT-conditions read

For $\left(P_{1}\right): \quad\binom{4 x_{1}}{1}+\mu_{1}\binom{2 x_{1}}{-1}=0$ with unique solution $\mu_{1}=1, \bar{x}_{1}=\bar{x}_{2}=0$
For $\left(P_{2}\right): \quad\binom{4 x_{1}}{1}+\mu_{2}\binom{-2 x_{1}}{-1}=0$ with unique solution $\mu_{2}=1, \bar{x}_{1}=\bar{x}_{2}=0$
Note that for both g_{1}, g_{2} must be active.
(c) Since $\left(P_{1}\right)$ is convex the KKT-point $\bar{x}=0$ must be a global minimizer (see Th. 3.7).
Since $\left(P_{2}\right)$ is not convex we have to check the second order conditions (in Th. 5.9) (or we can directly argue as below): we compute

$$
C_{\bar{x}}=\left\{d \mid \nabla f(\bar{x})^{T} d \leq 0, \nabla g_{2}(\bar{x})^{T} d \leq 0\right\}=\left\{d=\left(d_{1}, d_{2}\right) \mid d_{2}=0\right\}
$$

and thus

$$
d^{T} \nabla^{2} L\left(\bar{x}, \mu_{2}\right)=d^{T}\left(\left(\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right)+\mu_{2}\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right)\right) d=2 d_{1}^{2}>0
$$

for all $d=\left(d_{1}, 0\right) \in C_{\bar{x}} \backslash\{0\}$, i.e., $d_{1} \neq 0$. So \bar{x} is a local minimizer.
It is a global minimizer since $g_{2} \leq 0$ or $-x_{1}^{2} \leq x_{2}$ implies:

$$
2 x_{1}^{2}+x_{2} \geq 2 x_{1}^{2}-x_{1}^{2} \geq 0=f(\bar{x}) \quad \forall \text { feasible } x
$$

4. Consider the auxiliary program of the SQP-method (for solving a nonlinear program $(P))$ with some $x_{k} \in \mathbb{R}^{n}$:

$$
\left(Q_{k}\right) \quad \min _{d \in \mathbb{R}^{n}} \nabla f\left(x_{k}\right)^{T} d+\frac{1}{2} d^{T} L_{k} d \quad \text { s.t. } \quad \nabla g_{j}\left(x_{k}\right)^{T} d+g_{j}\left(x_{k}\right) \leq 0 \quad \forall j \in J
$$

Assume x_{k} is feasible for (P), i.e., $g_{j}\left(x_{k}\right) \leq 0 \forall j \in J$, and L_{k} is positive definite. Show that if $d_{k} \neq 0$ is a solution of $\left(Q_{k}\right)$ then d_{k} is a descent direction for f, i.e., $\nabla f\left(x_{k}\right)^{T} d<0$.

Solution: Since x_{k} is feasible for (P), i.e., $g_{j}\left(x_{k}\right) \leq 0, \forall j$, obviously $\bar{d}=0$ is feasible for $\left(Q_{k}\right)$. Since d_{k} is a global minimizer of $\left(Q_{k}\right)$ (why global?; $\left(Q_{k}\right)$ is convex!) we must have:

$$
\nabla f\left(x_{k}\right)^{T} d_{k}+\frac{1}{2} d_{k}^{T} L_{k} d_{k} \leq \nabla f\left(x_{k}\right)^{T} \bar{d}+\frac{1}{2} \bar{d}^{T} L_{k} \bar{d}=0
$$

Positive definiteness of L_{k} implies for $d_{k} \neq 0: \nabla f\left(x_{k}\right)^{T} d_{k} \leq-\frac{1}{2} d_{k}^{T} L_{k} d_{k}<0$.
5. Let $\mathcal{K}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid\|\mathbf{x}\|_{2} \leq \mathbf{1}^{\top} \mathbf{x}\right\}$, where $\mathbf{1} \in \mathbb{R}^{n}$ is the all-ones vector, and $\|\bullet\|_{2}$ is the Euclidean norm.
(a) Show that \mathcal{K} is a proper cone. [You may assume closure.]
(b) Show that the vectors $\mathbf{1}$ and $\left(\mathbf{1}-\mathbf{e}_{i}\right)$ are in \mathcal{K}^{*} for all $i=1, \ldots, n$, where $\mathbf{e}_{i} \in \mathbb{R}^{n}$ is the unit vector with the first entry equal to one and all other entries equal to zero.
(c) Show that $\mathcal{K}^{*} \subseteq \mathbb{R}_{+}^{n}$.

Solution:

(a) In order to show that \mathcal{K} is a proper cone, we need to show that it is a closed convex pointed full-dimensional cone. We assume closure and will now prove the rest of the properties:

- Convex cone:

Let $\mathbf{x}, \mathbf{y} \in \mathcal{K}$ and $\lambda_{1}, \lambda_{2}>0$. We have $\|\mathbf{x}\|_{2} \leq \mathbf{1}^{\top} \mathbf{x}$ and $\|\mathbf{y}\|_{2} \leq \mathbf{1}^{\top} \mathbf{y}$. Therefore, letting $\mathbf{z}=\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}$, we have

$$
\begin{aligned}
\|\mathbf{z}\|_{2}= & \left\|\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}\right\|_{2} \\
\leq & \left\|\lambda_{1} \mathbf{x}\right\|_{2}+\left\|\lambda_{2} \mathbf{y}\right\|_{2} \\
& =\lambda_{1}\|\mathbf{x}\|_{2}+\lambda_{2}\|\mathbf{y}\|_{2} \\
& \leq \lambda_{1} \mathbf{1}^{\top} \mathbf{x}+\lambda_{2} \mathbf{1}^{\top} \mathbf{y} \\
& =\mathbf{1}^{\top}\left(\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y}\right) \\
& =\mathbf{1}^{\top} \mathbf{z} .
\end{aligned}
$$

This implies then implies that $\mathbf{z} \in \mathcal{K}$.

- Pointed:

Suppose we have $\pm \mathbf{x} \in \mathcal{K}$. Then $\|\mathbf{x}\|_{2} \leq \mathbf{1}^{\top} \mathbf{x}$ and $\|-\mathbf{x}\|_{2} \leq \mathbf{1}^{\top}(-\mathbf{x})$. Therefore $2\|\mathbf{x}\|_{2}=\|\mathbf{x}\|_{2}+\|-\mathbf{x}\|_{2} \leq \mathbf{1}^{\top} \mathbf{x}-\mathbf{1}^{\top} \mathbf{x}=0$, and thus $\mathbf{x}=\mathbf{0}$.

- Full-dimensional:

The vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ are n linearly independent vectors and for all i we have $\left\|\mathbf{e}_{i}\right\|_{2}=1=\mathbf{1}^{\top} \mathbf{e}_{i}$.
(b) We have $\mathcal{K}^{*}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid \mathbf{x}^{\top} \mathbf{y} \geq 0\right.$ for all $\left.\mathbf{x} \in \mathcal{K}\right\}$.

For all $\mathbf{x} \in \mathcal{K}$ we have $\mathbf{1}^{\top} \mathbf{x} \geq\|\mathbf{x}\|_{2} \geq 0$, and thus $\mathbf{1} \in \mathcal{K}^{*}$.
For all $\mathbf{x} \in \mathcal{K}$ we have $\left(\mathbf{1}-\mathbf{e}_{i}\right)^{\top} \mathbf{x}=\mathbf{1}^{\top} \mathbf{x}-\mathbf{e}_{i}^{\top} \mathbf{x} \geq\|\mathbf{x}\|_{2}-\left\|\mathbf{e}_{i}\right\|_{2}\|\mathbf{x}\|_{2}=0$, and thus $\left(\mathbf{1}-\mathbf{e}_{i}\right) \in \mathcal{K}^{*}$.
(c) Consider an arbitrary $\mathbf{x} \notin \mathbb{R}_{+}^{n}$. Then there exists $i \in\{1, \ldots, n\}$ such that $x_{i}<0$. From the proof in part (a) we have that $\mathbf{e}_{i} \in \mathcal{K}$ and we have $\left\langle\mathbf{e}_{i}, \mathbf{x}\right\rangle=x_{i}<0$, which implies that $\mathbf{x} \notin \mathcal{K}^{*}$.
6. Consider three random variables X_{1}, X_{2}, X_{3}. Suppose that $\operatorname{corr}\left(X_{1}, X_{2}\right)=0.5$ and $\operatorname{corr}\left(X_{1}, X_{3}\right)=-0.6$.
(a) Formulate as a semidefinite optimisation problem, the problem of finding the minimum possible $\operatorname{corr}\left(X_{2}, X_{3}\right)$.
(b) What is the dual problem to the problem from part (a)?

Solution:

(a)

$$
\begin{array}{ll}
\min & y_{1} \\
\text { s.t. } & \left(\begin{array}{ccc}
1 & 0.5 & -0.6 \\
0.5 & 1 & y_{1} \\
-0.6 & y_{1} & 1
\end{array}\right) \in \mathcal{P S D}^{3} .
\end{array}
$$

(b) The problem from part (a) is equivalent to

$$
\begin{aligned}
-\max & -y_{1} \\
\text { s.t. } & \left(\begin{array}{ccc}
1 & 0.5 & -0.6 \\
0.5 & 1 & 0 \\
-0.6 & 0 & 1
\end{array}\right)-y_{1}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \in \mathcal{P S D}^{3} .
\end{aligned}
$$

The dual to this is then

$$
\begin{aligned}
-\min & \left\langle\left(\begin{array}{ccc}
1 & 0.5 & -0.6 \\
0.5 & 1 & 0 \\
-0.6 & 0 & 1
\end{array}\right), X\right\rangle \\
\text { s.t. } & \left\langle\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), X\right\rangle=-1 \\
& X \in \mathcal{P S D}^{3} .
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
\max & \left\langle-\left(\begin{array}{ccc}
1 & 0.5 & -0.6 \\
0.5 & 1 & 0 \\
-0.6 & 0 & 1
\end{array}\right), X\right\rangle \\
\text { s.t. } & \left\langle\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), X\right\rangle=1 \\
& X \in \mathcal{P S D}^{3} .
\end{aligned}
$$

7. Consider the following optimisation problem:

$$
\begin{align*}
\max & 4 x_{1} x_{2}-x_{2}^{2}-9 x_{1}+4 x_{2} \\
\text { s.t. } & 4 x_{1}^{2}+x_{2}^{2}-8 x_{1}+4 x_{2}+4=0 \tag{A}\\
& \mathbf{x} \in \mathbb{R}_{+}^{2}
\end{align*}
$$

(a) Give a finite lower bound to the optimal value of problem (A).
(b) Give the standard completely positive approximation for this problem, the solution of which would provide an upper bound to the optimal value of problem (A).

Solution:

(a) To get a finite upper bound we need a feasible point. To narrow down the search for such a feasible point, try setting $x_{2}=0$. Then for \mathbf{x} to be feasible we require $4 x_{1}^{2}-8 x_{1}+4=0$, or equivalently $x_{1}=1$. Therefore the point $(1,0)$ is feasible, giving us an upper bound of $4 * 1 * 0-0^{2}-9 * 1+4 * 0=-9$.
(b) Problem (A) is equivalent to

$$
\begin{align*}
\max & 4 x_{1} x_{2}-x_{2}^{2}-9 x_{1} x_{3}+4 x_{2} x_{3} \\
\text { s.t. } & 4 x_{1}^{2}+x_{2}^{2}-8 x_{1} x_{3}+4 x_{2} x_{3}=-4 \tag{1}\\
& x_{3}^{2}=1 \quad \mathbf{x} \in \mathbb{R}_{+}^{3} .
\end{align*}
$$

This is in turn equivalent to

$$
\left.\begin{array}{rl}
\max & \left\langle\left(\begin{array}{ccc}
0 & 2 & -9 / 2 \\
2 & -1 & 2 \\
-9 / 2 & 2 & 0
\end{array}\right), \mathbf{x x}^{\top}\right\rangle \\
\text { s.t. } & \left\langle\left(\begin{array}{ccc}
4 & 0 & -4 \\
0 & 1 & 2 \\
-4 & 2 & 0
\end{array}\right), \mathbf{x x}^{\top}\right\rangle=-4 \tag{2}\\
& \left\langle\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \mathbf{x x}^{\top}\right\rangle=1 \\
& \mathbf{x}
\end{array}\right\} \mathbb{R}_{+}^{3} .
$$

This can then be relaxed to

$$
\begin{aligned}
\max & \left\langle\left(\begin{array}{ccc}
0 & 2 & -9 / 2 \\
2 & -1 & 2 \\
-9 / 2 & 2 & 0
\end{array}\right), X\right\rangle \\
\text { s.t. } & \left\langle\left(\begin{array}{ccc}
4 & 0 & -4 \\
0 & 1 & 2 \\
-4 & 2 & 0
\end{array}\right), X\right\rangle=-4 \\
& \left\langle\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), X\right\rangle=1 \\
& X \in \mathcal{C} \mathcal{P}^{3} .
\end{aligned}
$$

8. (Automatic additional points)

Question:	1	2	3	4	5	6	7	8	Total
Points:	6	3	10	3	7	3	4	4	40

A copy of the lecture-sheets may be used during the examination. Good luck!

