
Exam: Continuous Optimisation 2015
3TU- and LNMB-course, Utrecht.

Monday 4th January 2016

1. Let fj(x), j = 1, . . . , k (1 ≤ k ∈ N), be convex functions defined on a convex set
C ⊂ Rn.

(a) [3 points]Consider with (given) αj ≥ 0, j = 1, . . . , k, the function f(x) :=
∑k

j=1 αjfj(x).
Show that f is convex on C.

(b) [3 points]Show that also g(x) := max1≤j≤k {fj(x)} is a convex function on C.

Solution:

(a) For x, y ∈ C, λ ∈ [0, 1] we find using convexity of the fj’s and αj ≥ 0:

f(λx+ (1− λ)y) =
k∑

j=1

αjfj(λx+ (1− λ)y)

fj convex, αj ≥ 0 ≤
k∑

j=1

αj[λfj(x) + (1− λ)fj(y)]

= λ[
k∑

j=1

αjfj(x)] + (1− λ)[
k∑

j=1

αjfj(y)]

= λf(x) + (1− λ)f(y)

(b) For x, y ∈ C, λ ∈ [0, 1] we find using convexity of the fj’s:

g(λx+ (1− λ)y) = max
1≤j≤k

{fj(λx+ (1− λ)y)}

≤ max
1≤j≤k

{λfj(x) + (1− λ)fj(y)}

≤ λ[ max
1≤j≤k

fj(x)] + (1− λ) max
1≤j≤k

{fj(y)}

= λg(x) + (1− λ)g(y)

where in the second ≤ we used that “max of a positive sum of functions
≤ positive sum of max of the functions”.
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2. [3 points]Consider the convex program

(CO) min
x∈Rn

f(x) s.t. x ∈ F := {x ∈ Rn | gj(x) ≤ 0, j = 1, . . . ,m } ,

with convex functions f, gj ∈ C1(Rn,R).

Show that if x ∈ F satisfies the KKT-conditions (Karush-Kuhn-Tucker conditions)
for (CO) with a multiplier vector y ≥ 0 then (x, y) is a saddle point for the La-
grangian function L(x, y) of (CO).

Solution: KKT-conditions means that x ∈ F satisfies with y ≥ 0,

(∇xL(x, y) =) ∇f(x) +
∑
j∈J

yj∇gj(x) = 0 with yjgj(x) = 0 ∀j ∈ J .

So (by Th. 3.4) x is a global solution of minx∈Rn L(x, y) and thus

L(x, y) ≤ L(x, y) ∀x ∈ Rn (?)

Moreover since x is feasible, i.e., gj(x) ≤ 0 ∀j, and using yjgj(x) = 0 we
obviously obtain for all y ≥ 0:

L(x, y) = f(x) +
∑
j∈J

yjgj(x) ≤ f(x) = f(x) +
∑
j∈J

yjgj(x) = L(x, y) .

Together with (?) this shows that (x, y) is a saddle point of L.
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3. Consider the two problems

(P1) min
x∈R2

f(x) s.t. g1(x) := x21 − x2 ≤ 0

(P2) min
x∈R2

f(x) s.t. g2(x) := −x21 − x2 ≤ 0

both with the same objective f(x) = 2x21 + x2.

(a) [3 points]Which of these programs (P1), (P2) is a convex problem? Sketch for both
problems the feasible set and the level set of f given by f(x) = f(0, 0).

(b) [3 points]Determine for both programs a (the) KKT-point x with corresponding La-
grangean multiplier µ.

(c) [4 points]Show for both problems that x is a (local) minimizer. Is it a global minimizer?

Solution:

(a) f, g1 are convex (e.g., show that Hessian is pos. semidef.). But g2 is not
convex, ∇2g2(x) =

(−2 0
0 0

)
is not positive semidefinite. So (P1) is convex,

(P2) is not. (Give two complete sketches).

(b) The KKT-conditions read

For (P1):

(
4x1
1

)
+µ1

(
2x1
−1

)
= 0 with unique solution µ1 = 1, x1 = x2 = 0

For (P2):

(
4x1
1

)
+µ2

(
−2x1
−1

)
= 0 with unique solution µ2 = 1, x1 = x2 = 0

Note that for both g1, g2 must be active.

(c) Since (P1) is convex the KKT-point x = 0 must be a global minimizer (see
Th. 3.7).
Since (P2) is not convex we have to check the second order conditions (in
Th. 5.9) (or we can directly argue as below): we compute

Cx = {d | ∇f(x)Td ≤ 0,∇g2(x)Td ≤ 0} = {d = (d1, d2) | d2 = 0}

and thus

dT∇2L(x, µ2) = dT
((4 0

0 0

)
+ µ2

(
−2 0

0 0

))
d = 2d21 > 0

for all d = (d1, 0) ∈ Cx \ {0}, i.e., d1 6= 0. So x is a local minimizer.
It is a global minimizer since g2 ≤ 0 or −x21 ≤ x2 implies:

2x21 + x2 ≥ 2x21 − x21 ≥ 0 = f(x) ∀feasible x.
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4. [3 points]Consider the auxiliary program of the SQP-method (for solving a nonlinear program
(P )) with some xk ∈ Rn:

(Qk) min
d∈Rn

∇f(xk)Td+
1

2
dTLkd s.t. ∇gj(xk)Td+ gj(xk) ≤ 0 ∀j ∈ J

Assume xk is feasible for (P ), i.e., gj(xk) ≤ 0∀j ∈ J , and Lk is positive definite.
Show that if dk 6= 0 is a solution of (Qk) then dk is a descent direction for f , i.e.,
∇f(xk)Td < 0.

Solution: Since xk is feasible for (P ), i.e., gj(xk) ≤ 0,∀j, obviously d = 0 is
feasible for (Qk). Since dk is a global minimizer of (Qk) (why global?; (Qk) is
convex!) we must have:

∇f(xk)Tdk +
1

2
dTkLkdk ≤ ∇f(xk)Td+

1

2
d
T
Lkd = 0

Positive definiteness of Lk implies for dk 6= 0: ∇f(xk)Tdk ≤ −1
2
dTkLkdk < 0.

4



Exam: Continuous Optimisation 2015 Monday 4th January 2016

5. Let K = {x ∈ Rn | ‖x‖2 ≤ 1Tx}, where 1 ∈ Rn is the all-ones vector, and ‖ • ‖2 is
the Euclidean norm.

(a) [4 points]Show that K is a proper cone. [You may assume closure.]

(b) [2 points]Show that the vectors 1 and (1 − ei) are in K∗ for all i = 1, . . . , n, where
ei ∈ Rn is the unit vector with the first entry equal to one and all other entries
equal to zero.

(c) [1 point]Show that K∗ ⊆ Rn
+.

Solution:

(a) In order to show that K is a proper cone, we need to show that it is a
closed convex pointed full-dimensional cone. We assume closure and will
now prove the rest of the properties:

• Convex cone:
Let x,y ∈ K and λ1, λ2 > 0. We have ‖x‖2 ≤ 1Tx and ‖y‖2 ≤ 1Ty.
Therefore, letting z = λ1x + λ2y, we have

‖z‖2 = ‖λ1x + λ2y‖2
≤ ‖λ1x‖2 + ‖λ2y‖2

= λ1‖x‖2 + λ2‖y‖2
≤ λ11

Tx + λ21
Ty

= 1T(λ1x + λ2y)

= 1Tz.

This implies then implies that z ∈ K.

• Pointed:
Suppose we have ±x ∈ K. Then ‖x‖2 ≤ 1Tx and ‖ − x‖2 ≤ 1T(−x).
Therefore 2‖x‖2 = ‖x‖2 + ‖− x‖2 ≤ 1Tx− 1Tx = 0, and thus x = 0.

• Full-dimensional:
The vectors e1, . . . , en ∈ Rn are n linearly independent vectors and
for all i we have ‖ei‖2 = 1 = 1Tei.

(b) We have K∗ = {y ∈ Rn | xTy ≥ 0 for all x ∈ K}.
For all x ∈ K we have 1Tx ≥ ‖x‖2 ≥ 0, and thus 1 ∈ K∗.
For all x ∈ K we have (1 − ei)

Tx = 1Tx − eTi x ≥ ‖x‖2 − ‖ei‖2‖x‖2 = 0,
and thus (1− ei) ∈ K∗.

(c) Consider an arbitrary x /∈ Rn
+. Then there exists i ∈ {1, . . . , n} such that

xi < 0. From the proof in part (a) we have that ei ∈ K and we have
〈ei,x〉 = xi < 0, which implies that x /∈ K∗.
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6. Consider three random variables X1, X2, X3. Suppose that corr(X1, X2) = 0.5 and
corr(X1, X3) = −0.6.

(a) [1 point]Formulate as a semidefinite optimisation problem, the problem of finding the
minimum possible corr(X2, X3).

(b) [2 points]What is the dual problem to the problem from part (a)?

Solution:

(a) min y1

s.t.

 1 0.5 −0.6
0.5 1 y1
−0.6 y1 1

 ∈ PSD3.

(b) The problem from part (a) is equivalent to

−max − y1

s.t.

 1 0.5 −0.6
0.5 1 0
−0.6 0 1

− y1
0 0 0

0 0 −1
0 −1 0

 ∈ PSD3.

The dual to this is then

−min

〈 1 0.5 −0.6
0.5 1 0
−0.6 0 1

 , X

〉

s.t.

〈0 0 0
0 0 −1
0 −1 0

 , X

〉
= −1

X ∈ PSD3.

This is equivalent to

max

〈
−

 1 0.5 −0.6
0.5 1 0
−0.6 0 1

 , X

〉

s.t.

〈0 0 0
0 0 1
0 1 0

 , X

〉
= 1

X ∈ PSD3.
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7. Consider the following optimisation problem:

max 4x1x2 − x22 − 9x1 + 4x2

s.t. 4x21 + x22 − 8x1 + 4x2 + 4 = 0

x ∈ R2
+

(A)

(a) [1 point]Give a finite lower bound to the optimal value of problem (A).

(b) [3 points]Give the standard completely positive approximation for this problem, the
solution of which would provide an upper bound to the optimal value of prob-
lem (A).

Solution:

(a) To get a finite upper bound we need a feasible point. To narrow down the
search for such a feasible point, try setting x2 = 0. Then for x to be feasible
we require 4x21 − 8x1 + 4 = 0, or equivalently x1 = 1. Therefore the point
(1, 0) is feasible, giving us an upper bound of 4∗1∗0−02−9∗1+4∗0 = −9.

(b) Problem (A) is equivalent to

max 4x1x2 − x22 − 9x1x3 + 4x2x3

s.t. 4x21 + x22 − 8x1x3 + 4x2x3 = −4

x23 = 1 x ∈ R3
+.

(1)

This is in turn equivalent to

max

〈 0 2 −9/2
2 −1 2
−9/2 2 0

 ,xxT

〉

s.t.

〈 4 0 −4
0 1 2
−4 2 0

 ,xxT

〉
= −4

〈0 0 0
0 0 0
0 0 1

 ,xxT

〉
= 1

x ∈ R3
+.

(2)
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This can then be relaxed to

max

〈 0 2 −9/2
2 −1 2
−9/2 2 0

 , X

〉

s.t.

〈 4 0 −4
0 1 2
−4 2 0

 , X

〉
= −4

〈0 0 0
0 0 0
0 0 1

 , X

〉
= 1

X ∈ CP3.

(3)

8. [4 points](Automatic additional points)

Question: 1 2 3 4 5 6 7 8 Total

Points: 6 3 10 3 7 3 4 4 40

A copy of the lecture-sheets may be used during the examination.
Good luck!
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