
Exam: Continuous Optimisation 2015

1. [3 points]Let f : C → R, C ⊂ Rn convex, be a convex function. Show that then the following
holds:
A local minimizer of f on C is a global minimizer on C. And a strict local minimizer
of f on C is a strict global minimizer on C.

Solution: for a local minimizer x: Suppose x is not a global minimiser. Then
with some y ∈ C we have f(x) > f(y). Thus for 0 < λ ≤ 1 we find with
xλ := x + λ(y − x) using convexity of f :

f(xλ) ≤ f(x) + λ[f(y)− f(x)] < f(x)

So letting λ→ 0+, x cannot be a local minimizer.
for a strict local minimizer x: Suppose it is not a strict global minimiser. Then
with some y ∈ C,x 6= y we have f(x) ≥ f(y). Thus for 0 < λ ≤ 1 we find with
xλ := x + λ(y − x) using convexity of f :

f(xλ) ≤ f(x) + λ[f(y)− f(x)] ≤ f(x)

So letting λ→ 0+, x cannot be a strict local minimizer.

2. (a) [2 points]Show that for d ∈ Rn it holds:

dTx ≥ 0 ∀x ∈ Rn ⇔ d = 0.

(b) [3 points]Let c, ai ∈ Rn, i = 1, . . . ,m (m ≥ 1). Show using the Farkas Lemma (lecture
sheets, Th. 5.1) that precisely one of the following alternatives (I) or (II) is
true:
(I): cTx < 0, aT

i x ≤ 0, i = 1, . . . ,m has a solution x ∈ Rn.
(II): there exist µ1 ≥ 0, . . . , µm ≥ 0 such that: c +

∑m
i=1 µiai = 0

Solution:

(a) “⇒”:

dTx ≥ 0 ∀x ∈ Rn ⇒ ±dTej ≥ 0∀j ⇒ dTej = 0 ∀j ⇒ d = 0

“⇐”:
d = 0⇒ dTx = 0 ∀x ∈ Rn ⇒ dTx ≥ 0 ∀x ∈ Rn

(b) Considering am+1 = c and b = −em+1 ∈ Rm+1 we have that (I) is equiva-
lent to:

(i): aT
i x ≤ bi, i = 1, . . . , (m+ 1) has a solution x.

By Farkas’ Lemma, precisely one of either (i) or the following statement,
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(ii), is true:

(ii): ∃y ∈ Rm+1
+ such that 0 =

∑m+1
i=1 yiai, 0 > bTy.

This is equivalent to:

∃y ∈ Rm+1
+ such that 0 = ym+1c +

∑m
i=1 yiai, 0 > −ym+1,

which in turn is equivalent to (II).

3. Given is the problem

(P ) min
x∈R2

(−2x1 − x2) s.t. x1 ≤ 0, and − (x1 − 1)2 − (x2 − 1)2 + 2 ≤ 0 .

(a) [3 points]Is (P ) a convex problem? Sketch the feasible set and the level set of f given
by f(x) = f(x) with x = 0. Is LICQ (constraint qualification) satisfied at x?

(b) [3 points]Show that the point x = 0 is a KKT-point of (P ). Determine the corresponding
Lagrangean multipliers.

(c) [3 points]Show that x is a local minimizer. What is the order of this minimizer? Is it a
global minimizer?

(d) [2 points]Consider now the program (objective f and constraint function g2 interchanged):

(P̃ ) min
x∈R2
−(x1 − 1)2 − (x2 − 1)2 + 2 s.t. x1 ≤ 0, and − 2x1 − x2 ≤ 0 .

Explain (without any further calculations) why x = 0 is also a local minimizer

of (P̃ ).

Solution:

(a) (P) is not a convex program since g2 is not convex: ∇2g2(x) =
(−2 0

0 −2

)
is

negative definite.

Above is a sketch of the problem. The feasible set is coloured blue and the
level curve is coloured red.
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LICQ holds at x = 0:

∇g1(x) =

(
1

0

)
, ∇g2(x) =

(
2

2

)
are linearly independent

Give a complete sketch.

(b) The KKT condition for x = 0 (g1 and g2 active) read:(
−2

−1

)
+ µ1

(
1

0

)
+ µ2

(
2

2

)
= 0

With (unique) solution µ1 = 1, µ2 = 1/2.

(c) Since the assumptions of Th 5.13 are satisfied, x = 0 is a local minimizer
of order p = 1.
It is not a global minimizer since f(x) = 0 and e.g. for feasible x =
(0, x2), x2 ≥ 2 we have f(0, x2)→ −∞ for x2 →∞.

(d) The KKT condition at x = 0 for (P) directly yields a corresponding KKT

condition for (P̃ ) at x (feasible for (P̃ )!!) which again satisfies the assump-

tion of Theorem 5.13 for (P̃ ).

4. [3 points]Consider the (nonlinear) program:

(P ) min
x

f(x) s.t. x ∈ F := {x ∈ Rn | gj(x) ≤ 0, j ∈ J}

with f, gj ∈ C1, f, g : Rn → R, J = {1, . . . ,m}. Let dk be a strictly feasible descent
direction for xk ∈ F . Show that for t > 0, small enough, it holds:

f(xk + tdk) < f(xk) and xk + tdk ∈ F

Solution: By using Taylor around xk we find for j ∈ Jxk
(use ∇gj(xk)Tdk <

0; gj(xk) = 0):

gj(xk+tdk) = gj(xk)+t∇gj(xk)Tdk+o(t) = t∇gj(xk)Tdk+o(t) < 0 for t > 0 small enough.

By continuity also for j /∈ Jxk
we have gj(xk + tdk) < 0 for t > 0 small enough.

So xk + tdk ∈ F . In view of ∇f(xk)
Tdk < 0 we also find

f(xk + tdk) = f(xk) + t∇f(xk)
Tdk + o(t) < f(xk) for t > 0 small enough.
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5. For a given nonempty set A ⊆ Rn we define its conic hull, conic(A) by

conic(A) :=

{
m∑
i=1

µixi : xi ∈ A, µi ≥ 0 for all i, m ∈ N

}
.

(a) [2 points]Show that conic(A) is a convex cone.

(b) [3 points]Show that if A ⊆ B ⊆ Rn, with B being a convex cone, then conic(A) ⊆ B.

(c) [1 point]Show that conic(A) is full dimensional if and only if there does not exist
y ∈ Rn \ {0} such that 〈y,x〉 = 0 for all x ∈ A.

Solution:

(a) By Theorem 7.2, equivalently we want to show that for all u,v ∈ conic(A)
and λ1, λ2 > 0 we have λ1u + λ2v ∈ conic(A).

Considering an arbitrary u,v ∈ conic(A) and λ1, λ2 > 0 we have

u =
m∑
i=1

µixi, v =

p∑
i=1

νiyi,

for some x1, . . . ,xm,y1, . . . ,yp ∈ A,
µ1, . . . , µm, ν1, . . . , νp ≥ 0,

p,m ∈ N.

Therefore

λ1u + λ2v =
m∑
i=1

λ1µ
i︸︷︷︸

≥0

xi +

p∑
i=1

λ2ν
i︸︷︷︸

≥0

yi ∈ conic(A).

(b) For k ∈ N, let Lk :=
{∑k

i=1 µ
ixi : xi ∈ A, µi ≥ 0 for all i

}
. We will

prove by induction that Lk ⊆ B for all k ∈ N, and thus B ⊇
⋃
k∈N Lk =

conic(A).

We start by proving the case of k = 1. If y ∈ L1 then y = µx for some
µ ≥ 0 and x ∈ A. We thus have x ∈ B, and as B is a cone we have
y = µx ∈ B.

We now suppose the statement is true for k, and show it is also true for
k + 1. If y ∈ Lk+1 then y =

∑k+1
i=1 µ

ixi where xi ∈ A and µi ≥ 0 for all i.

Letting z1 =
∑k

i=1 2µixi ∈ Lk ⊆ B and z2 = 2µk+1xk+1 ∈ L1 ⊆ B, the set
B being convex implies that B 3 1

2
z1 + 1

2
z2 = y.
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Alternatively:

conic(A) =

{
m∑
i=1

µixi : xi ∈ A, µi ≥ 0 for all i, m ∈ N

}

= {0} ∪

{
m∑
i=1

µixi : xi ∈ A, µi ≥ 0 for all i, m ∈ N, λ =
m∑
i=1

µi > 0

}

= {0} ∪

{
λ

m∑
i=1

θixi : xi ∈ A, θi ≥ 0 for all i, m ∈ N, 1 =
m∑
i=1

θi, λ > 0

}
= {0} ∪ R++ conv(A) = R+ conv(A).

As B is convex, we have conv(A) ⊆ B. As B is a cone we then get

B ⊇ R+ conv(A) = conic(A).

(c) We will prove the equivalent statement that conic(A) is not full dimensional
if and only if there exists y ∈ Rn \ {0} such that 〈y,x〉 = 0 for all x ∈ A.

(⇒) Suppose conic(A) is not full-dimensional. Then by definition 7.8.3
there exists y ∈ Rn \ {0} such that 〈y,x〉 = 0 for all x ∈ conicA. We
trivially have A ⊆ conic(A) and thus 〈y,x〉 = 0 for all x ∈ A.

(⇐) Suppose there exists y ∈ Rn \ {0} such that 〈y,x〉 = 0 for all x ∈ A.
Then for all z ∈ conic(A) we have z =

∑m
i=1 µ

ixi for some xi ∈ A
and µi ≥ 0 for all i, m ∈ N, and thus 〈y, z〉 =

∑m
i=1 µ

i〈y,xi〉 =
0. Therefore, by definition 7.8.3, we have that conic(A) is not full-
dimensional.

6. In this question we will consider the proper cone K ⊆ Rn+2 defined as

K =


xy
z

 : y ∈ Rn, x, z ∈ R, ‖y‖2 ≤ x, z ≥ 0

 .

(a) [2 points]Consider a ray R = {c− y1a | y1 ∈ R+} with fixed a, c ∈ Rn. We wish to find
the distance between the origin and the closest point in this ray. Formulate
this problem as a conic optimisation problem over K.

(b) [1 point]Give an explicit characterisation of K∗.
[Justification for your answer must be provided]

(c) [2 points]What is the dual problem to your formulation in part (a)?

[If you were not able to answer parts (a) and (b) then instead find the dual
to: miny y s. t. c + ya ∈ Rn

+. ]
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Solution:

(a) This problem is equivalent to the following problems

min
y1

‖c− y1a‖2 s. t. y1 ≥ 0,

min
y

y2

s. t. ‖c− y1a‖2 ≤ y2, y1 ≥ 0,

min
y

y2

s. t.

0
c
0

− y1
 0

a
−1

− y2
−1

0
0

 ∈ K
−max

y
0y1 − y2

s. t.

0
c
0

− y1
 0

a
−1

− y2
−1

0
0

 ∈ K

The correct answer is either of the last two formulations, or equivalent.

(b) We have that K = Ln × R+, and thus K∗ = L∗n × R∗+ = Ln × R+ = K.

(c) Considering

−max
y

0y1 − y2

s. t.

0
c
0

− y1
 0

a
−1

− y2
−1

0
0

 ∈ K
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the dual problem is

−min
x,y,z

〈0
c
0

 ,

xy
z

〉

s. t.

〈 0
a
−1

 ,

xy
z

〉 = 0

〈−1
0
0

 ,

xy
z

〉 = −1,

xy
z

 ∈ K∗
This can be simplified to

max
x,y,z

− 〈c,y〉

s. t. z = 〈a,y〉
x = 1, z ≥ 0, ‖y‖2 ≤ x

which in turn is equivalent to

max
y

〈−c,y〉 s. t. 〈a,y〉 ≥ 0, ‖y‖2 ≤ 1.

Alternative question:
The problem is equivalent to −maxy −y s. t. c− y(−a) ∈ Rn

+.

The dual to this is −minx 〈c,x〉 s. t. 〈−a,x〉 = −1, x ∈ Rn
+,

which is equivalent to maxx 〈−c,x〉 s. t. 〈a,x〉 = 1, x ∈ Rn
+

7. [3 points]Consider the following optimisation problem:

min
x

2x22 + 5x1x2 − 4x2

s. t. 2x21 + x1 + 3x22 − 2x1x2 = 3 (A)

x ∈ R2.

Give the standard positive semidefinite approximation for this problem, the solution
of which would provide a lower bound to the optimal value of problem (A).
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Solution: This problem is equivalent to

min
x

〈(
0 5/2

5/2 2

)
,xxT

〉
− 4x2

s. t.

〈(
2 −1
−1 3

)
,xxT

〉
+ x1 = 3(

1 xT

x xxT

)
∈ PSD3

x ∈ R3,

which can be relaxed to

min
x,X

〈(
0 5/2

5/2 2

)
,X

〉
− 4x2

s. t.

〈(
2 −1
−1 3

)
,X

〉
+ x1 = 3(

1 xT

x X

)
∈ PSD3

x ∈ R3

8. [4 points](Automatic additional points)

Question: 1 2 3 4 5 6 7 8 Total

Points: 3 5 11 3 6 5 3 4 40

A copy of the lecture-sheets may be used during the examination.
Good luck!
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