Exam: Continuous Optimisation 2015

1. Let $f: \mathcal{C} \to \mathbb{R}, \mathcal{C} \subset \mathbb{R}^n$ convex, be a convex function. Show that then the following [3 points] holds:

A local minimizer of f on C is a global minimizer on C. And a strict local minimizer of f on $\mathcal C$ is a strict global minimizer on $\mathcal C$.

Solution: for a local minimizer \overline{x} : Suppose \overline{x} is not a global minimiser. Then with some $y \in C$ we have $f(\bar{x}) > f(y)$. Thus for $0 < \lambda \leq 1$ we find with $\mathbf{x}_{\lambda} := \overline{\mathbf{x}} + \lambda(\mathbf{y} - \overline{\mathbf{x}})$ using convexity of f:

$$
f(\mathbf{x}_{\lambda}) \le f(\overline{\mathbf{x}}) + \lambda[f(\mathbf{y}) - f(\overline{\mathbf{x}})] < f(\overline{\mathbf{x}})
$$

So letting $\lambda \to 0^+, \bar{\mathbf{x}}$ cannot be a local minimizer. for a strict local minimizer \bar{x} : Suppose it is not a strict global minimiser. Then with some $y \in \mathcal{C}, \overline{x} \neq y$ we have $f(\overline{x}) \geq f(y)$. Thus for $0 < \lambda \leq 1$ we find with $\mathbf{x}_{\lambda} := \overline{\mathbf{x}} + \lambda(\mathbf{y} - \overline{\mathbf{x}})$ using convexity of f:

$$
f(\mathbf{x}_{\lambda}) \le f(\overline{\mathbf{x}}) + \lambda[f(\mathbf{y}) - f(\overline{\mathbf{x}})] \le f(\overline{\mathbf{x}})
$$

So letting $\lambda \to 0^+$, $\bar{\mathbf{x}}$ cannot be a strict local minimizer.

2. (a) Show that for $\mathbf{d} \in \mathbb{R}^n$ it holds: [2 points]

$$
\mathbf{d}^{\mathsf{T}}\mathbf{x} \ge 0 \; \forall \mathbf{x} \in \mathbb{R}^n \quad \Leftrightarrow \quad \mathbf{d} = 0.
$$

- (b) Let $\mathbf{c}, \mathbf{a}_i \in \mathbb{R}^n, i = 1, \ldots, m \ (m \geq 1)$. Show using the Farkas Lemma (lecture [3 points] sheets, Th. 5.1) that precisely one of the following alternatives (I) or (II) is true:
	- (I): $\mathbf{c}^\mathsf{T} \mathbf{x} < 0$, $\mathbf{a}_i^\mathsf{T} \mathbf{x} \leq 0$, $i = 1, ..., m$ has a solution $\mathbf{x} \in \mathbb{R}^n$.
	- (II): there exist $\mu_1 \geq 0, \ldots, \mu_m \geq 0$ such that: $\mathbf{c} + \sum_{i=1}^m \mu_i \mathbf{a}_i = 0$

Solution:

 (a) "⇒": $\mathbf{d}^\mathsf{T}\mathbf{x} \geq 0 \; \forall \mathbf{x} \in \mathbb{R}^n \Rightarrow \pm \mathbf{d}^\mathsf{T}\mathbf{e}_j \geq 0 \forall j \Rightarrow \mathbf{d}^\mathsf{T}\mathbf{e}_j = 0 \; \forall j \Rightarrow \mathbf{d} = \mathbf{0}$ $``\Leftarrow"$: $\mathbf{d} = \mathbf{0} \Rightarrow \mathbf{d}^{\mathsf{T}} \mathbf{x} = 0 \; \forall \mathbf{x} \in \mathbb{R}^n \Rightarrow \mathbf{d}^{\mathsf{T}} \mathbf{x} \geq 0 \; \forall \mathbf{x} \in \mathbb{R}^n$ (b) Considering $\mathbf{a}_{m+1} = \mathbf{c}$ and $\mathbf{b} = -\mathbf{e}_{m+1} \in \mathbb{R}^{m+1}$ we have that (I) is equivalent to: (i): $\mathbf{a}_i^{\mathsf{T}} \mathbf{x} \leq b_i$, $i = 1, \ldots, (m+1)$ has a solution **x**. By Farkas' Lemma, precisely one of either (i) or the following statement,

(ii), is true: (ii): $\exists \mathbf{y} \in \mathbb{R}^{m+1}_+$ such that $\mathbf{0} = \sum_{i=1}^{m+1} y_i \mathbf{a}_i, 0 > \mathbf{b}^\mathsf{T} \mathbf{y}$. This is equivalent to: $\exists y \in \mathbb{R}^{m+1}_+$ such that $\mathbf{0} = y_{m+1}\mathbf{c} + \sum_{i=1}^m y_i \mathbf{a}_i, 0 > -y_{m+1},$ which in turn is equivalent to (II) .

3. Given is the problem

- (P) $\min_{\mathbf{x} \in \mathbb{R}^2} (-2x_1 x_2)$ s.t. $x_1 \leq 0$, and $-(x_1 1)^2 (x_2 1)^2 + 2 \leq 0$.
- (a) Is (P) a convex problem? Sketch the feasible set and the level set of f given [3 points] by $f(\mathbf{x}) = f(\overline{\mathbf{x}})$ with $\overline{\mathbf{x}} = 0$. Is LICQ (constraint qualification) satisfied at $\overline{\mathbf{x}}$?
- (b) Show that the point $\bar{\mathbf{x}} = 0$ is a KKT-point of (P) . Determine the corresponding [3 points] Lagrangean multipliers.
- (c) Show that \bar{x} is a local minimizer. What is the order of this minimizer? Is it a [3 points] global minimizer?
- (d) Consider now the program (objective f and constraint function g_2 interchanged): [2 points]

$$
(\widetilde{P})
$$
 $\min_{\mathbf{x} \in \mathbb{R}^2} -(x_1 - 1)^2 - (x_2 - 1)^2 + 2$ s.t. $x_1 \le 0$, and $-2x_1 - x_2 \le 0$.

Explain (without any further calculations) why $\bar{x} = 0$ is also a local minimizer of (P) .

Solution:

(a) (P) is not a convex program since g_2 is not convex: $\nabla^2 g_2(\mathbf{x}) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$ is negative definite.

Above is a sketch of the problem. The feasible set is coloured blue and the level curve is coloured red.

LICQ holds at $\bar{\mathbf{x}} = \mathbf{0}$: $\nabla g_1(\mathbf{x}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 $\Big), \quad \nabla g_2(\overline{\mathbf{x}}) = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ 2 \setminus are linearly independent Give a complete sketch. (b) The KKT condition for $\bar{\mathbf{x}} = \mathbf{0}$ (g_1 and g_2 active) read: (-2) −1 \setminus $+ \mu_1$ $\sqrt{1}$ 0 \setminus $+$ μ_2 $\sqrt{2}$ 2 \setminus $= 0$ With (unique) solution $\mu_1 = 1, \mu_2 = 1/2$. (c) Since the assumptions of Th 5.13 are satisfied, $\bar{\mathbf{x}} = \mathbf{0}$ is a local minimizer of order $p=1$. It is not a global minimizer since $f(\bar{x}) = 0$ and e.g. for feasible $x =$ $(0, x_2), x_2 \geq 2$ we have $f(0, x_2) \rightarrow -\infty$ for $x_2 \rightarrow \infty$. (d) The KKT condition at $\bar{\mathbf{x}} = \mathbf{0}$ for (P) directly yields a corresponding KKT condition for (P) at $\bar{\mathbf{x}}$ (feasible for (P) !!) which again satisfies the assumption of Theorem 5.13 for (P) .

- 4. Consider the (nonlinear) program: [3 points]
	- (P) min $f(\mathbf{x})$ s.t. $\mathbf{x} \in \mathcal{F} := {\mathbf{x} \in \mathbb{R}^n \mid g_j(\mathbf{x}) \leq 0, j \in J}$

with $f, g_j \in C^1, f, g : \mathbb{R}^n \to \mathbb{R}, J = \{1, \ldots, m\}$. Let \mathbf{d}_k be a strictly feasible descent direction for $\mathbf{x}_k \in \mathcal{F}$. Show that for $t > 0$, small enough, it holds:

$$
f(\mathbf{x}_k + t\mathbf{d}_k) < f(\mathbf{x}_k)
$$
 and $\mathbf{x}_k + t\mathbf{d}_k \in \mathcal{F}$

Solution: By using Taylor around \mathbf{x}_k we find for $j \in J_{\mathbf{x}_k}$ (use $\nabla g_j(\mathbf{x}_k)^\mathsf{T} \mathbf{d}_k <$ 0; $g_j(\mathbf{x}_k) = 0$: $g_j(\mathbf{x}_k+t\mathbf{d}_k)=g_j(\mathbf{x}_k)+t\nabla g_j(\mathbf{x}_k)^{\mathsf{T}}\mathbf{d}_k+o(t)=t\nabla g_j(\mathbf{x}_k)^{\mathsf{T}}\mathbf{d}_k+o(t)<0$ for $t>0$ small enough. By continuity also for $j \notin J_{\mathbf{x}_k}$ we have $g_j(\mathbf{x}_k + t\mathbf{d}_k) < 0$ for $t > 0$ small enough. So $\mathbf{x}_k + t \mathbf{d}_k \in \mathcal{F}$. In view of $\nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d}_k < 0$ we also find $f(\mathbf{x}_k + t\mathbf{d}_k) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^{\mathsf{T}}\mathbf{d}_k + o(t) < f(\mathbf{x}_k)$ for $t > 0$ small enough.

5. For a given nonempty set $A \subseteq \mathbb{R}^n$ we define its conic hull, conic(A) by

$$
conic(\mathcal{A}) := \left\{ \sum_{i=1}^m \mu^i \mathbf{x}^i \ : \ \mathbf{x}^i \in \mathcal{A}, \ \mu^i \geq 0 \ \text{for all } i, \ m \in \mathbb{N} \right\}.
$$

- (a) Show that $conic(\mathcal{A})$ is a convex cone. [2 points]
- (b) Show that if $A \subseteq B \subseteq \mathbb{R}^n$, with B being a convex cone, then conic(A) \subseteq B. [3 points]
- (c) Show that $conic(A)$ is full dimensional if and only if there does not exist [1 point] $y \in \mathbb{R}^n \setminus \{0\}$ such that $\langle y, x \rangle = 0$ for all $x \in \mathcal{A}$.

Solution:

(a) By Theorem 7.2, equivalently we want to show that for all $\mathbf{u}, \mathbf{v} \in \text{conic}(\mathcal{A})$ and $\lambda_1, \lambda_2 > 0$ we have $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} \in \text{conic}(\mathcal{A})$.

Considering an arbitrary $\mathbf{u}, \mathbf{v} \in \text{conic}(\mathcal{A})$ and $\lambda_1, \lambda_2 > 0$ we have

 $p, m \in \mathbb{N}$.

$$
\mathbf{u} = \sum_{i=1}^{m} \mu^i \mathbf{x}^i, \qquad \mathbf{v} = \sum_{i=1}^{p} \nu^i \mathbf{y}^i,
$$

for some $\mathbf{x}^1, \dots, \mathbf{x}^m, \mathbf{y}^1, \dots, \mathbf{y}^p \in \mathcal{A},$
$$
\mu^1, \dots, \mu^m, \nu^1, \dots, \nu^p \ge 0,
$$

Therefore

$$
\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} = \sum_{i=1}^m \underbrace{\lambda_1 \mu^i}_{\geq 0} \mathbf{x}^i + \sum_{i=1}^p \underbrace{\lambda_2 \nu^i}_{\geq 0} \mathbf{y}^i \in \text{conic}(\mathcal{A}).
$$

(b) For $k \in \mathbb{N}$, let $\mathcal{L}^k := \left\{ \sum_{i=1}^k \mu^i \mathbf{x}^i : \mathbf{x}^i \in \mathcal{A}, \mu^i \geq 0 \text{ for all } i \right\}$. We will prove by induction that $\mathcal{L}^k \subseteq \mathcal{B}$ for all $k \in \mathbb{N}$, and thus $\mathcal{B} \supseteq \bigcup_{k \in \mathbb{N}} \mathcal{L}^k =$ $conic(\mathcal{A}).$

We start by proving the case of $k = 1$. If $y \in \mathcal{L}^1$ then $y = \mu x$ for some $\mu \geq 0$ and $\mathbf{x} \in \mathcal{A}$. We thus have $\mathbf{x} \in \mathcal{B}$, and as \mathcal{B} is a cone we have $y = \mu x \in \mathcal{B}$.

We now suppose the statement is true for k , and show it is also true for k + 1. If $y \in \mathcal{L}^{k+1}$ then $y = \sum_{i=1}^{k+1} \mu^i x^i$ where $x^i \in \mathcal{A}$ and $\mu^i \geq 0$ for all i. Letting $\mathbf{z}^1 = \sum_{i=1}^k 2\mu^i \mathbf{x}^i \in \mathcal{L}^k \subseteq \mathcal{B}$ and $\mathbf{z}^2 = 2\mu^{k+1} \mathbf{x}^{k+1} \in \mathcal{L}^1 \subseteq \mathcal{B}$, the set B being convex implies that $\mathcal{B} \ni \frac{1}{2} \mathbf{z}^1 + \frac{1}{2}$ $\frac{1}{2}\mathbf{z}^2 = \mathbf{y}$.

Alternatively: $\text{conic}(\mathcal{A}) = \left\{ \sum_{i=1}^{m} \right\}$ $i=1$ $\mu^i \mathbf{x}^i : \mathbf{x}^i \in \mathcal{A}, \mu^i \geq 0 \text{ for all } i, m \in \mathbb{N}$ \mathcal{L} $=\{\mathbf{0}\}\cup\bigg\{\sum_{m=1}^{m}\bigg\}$ $i=1$ $\mu^i \mathbf{x}^i : \mathbf{x}^i \in \mathcal{A}, \mu^i \geq 0 \text{ for all } i, m \in \mathbb{N}, \lambda = \sum^m$ $i=1$ $\mu^i>0$) $=\{\mathbf{0}\}\cup\left\{ \lambda\sum^{m}\right\}$ $i=1$ $\theta^i \mathbf{x}^i$: $\mathbf{x}^i \in \mathcal{A}, \ \theta^i \geq 0 \text{ for all } i, \ m \in \mathbb{N}, \ 1 = \sum_{i=1}^m$ $i=1$ $\theta^i, \ \lambda > 0$ \mathcal{L} $=\{0\}\cup\mathbb{R}_{++}\text{conv}(\mathcal{A})=\mathbb{R}_{+}\text{conv}(\mathcal{A}).$ As $\mathcal B$ is convex, we have conv $(\mathcal A) \subseteq \mathcal B$. As $\mathcal B$ is a cone we then get $\mathcal{B} \supseteq \mathbb{R}_{+}$ conv $(\mathcal{A}) =$ conic (\mathcal{A}) . (c) We will prove the equivalent statement that $\text{conic}(\mathcal{A})$ is not full dimensional if and only if there exists $y \in \mathbb{R}^n \setminus \{0\}$ such that $\langle y, x \rangle = 0$ for all $x \in \mathcal{A}$. (⇒) Suppose conic(\mathcal{A}) is not full-dimensional. Then by definition 7.8.3 there exists $y \in \mathbb{R}^n \setminus \{0\}$ such that $\langle y, x \rangle = 0$ for all $x \in \text{conic } A$. We trivially have $A \subseteq \text{conic}(\mathcal{A})$ and thus $\langle y, x \rangle = 0$ for all $x \in \mathcal{A}$. (←) Suppose there exists $y \in \mathbb{R}^n \setminus \{0\}$ such that $\langle y, x \rangle = 0$ for all $x \in \mathcal{A}$. Then for all $\mathbf{z} \in \text{conic}(\mathcal{A})$ we have $\mathbf{z} = \sum_{i=1}^m \mu^i \mathbf{x}^i$ for some $\mathbf{x}^i \in \mathcal{A}$ and $\mu^i \geq 0$ for all i, $m \in \mathbb{N}$, and thus $\langle y, z \rangle = \sum_{i=1}^m \mu^i \langle y, x^i \rangle =$ 0. Therefore, by definition 7.8.3, we have that $conic(\mathcal{A})$ is not fulldimensional.

6. In this question we will consider the proper cone $\mathcal{K} \subseteq \mathbb{R}^{n+2}$ defined as

$$
\mathcal{K} = \left\{ \begin{pmatrix} x \\ \mathbf{y} \\ z \end{pmatrix} : \mathbf{y} \in \mathbb{R}^n, \ x, z \in \mathbb{R}, \ ||\mathbf{y}\|_2 \leq x, \ z \geq 0 \right\}.
$$

- (a) Consider a ray $\mathcal{R} = \{c y_1 \mathbf{a} \mid y_1 \in \mathbb{R}_+\}$ with fixed $\mathbf{a}, \mathbf{c} \in \mathbb{R}^n$. We wish to find [2 points] the distance between the origin and the closest point in this ray. Formulate this problem as a conic optimisation problem over K .
- (b) Give an explicit characterisation of K^* . [1 point] [Justification for your answer must be provided]
- (c) What is the dual problem to your formulation in part (a) ? [2 points] [If you were not able to answer parts (a) and (b) then instead find the dual to: $\min_y \quad y \quad \text{s.t.} \quad \mathbf{c} + y\mathbf{a} \in \mathbb{R}^n_+$ $\begin{bmatrix} n \\ + \end{bmatrix}$

Solution:

(a) This problem is equivalent to the following problems

$$
\min_{y_1} \qquad \|\mathbf{c} - y_1 \mathbf{a}\|_2 \qquad \text{s.t.} \qquad y_1 \ge 0,
$$

$$
\begin{aligned}\n\min_{\mathbf{y}} \quad &y_2\\
\text{s.t.} \quad & \|\mathbf{c} - y_1 \mathbf{a}\|_2 \leq y_2, \qquad y_1 \geq 0,\n\end{aligned}
$$

$$
\begin{array}{ll}\n\min_{\mathbf{y}} & y_2 \\
\text{s.t.} & \begin{pmatrix} 0 \\ \mathbf{c} \\ 0 \end{pmatrix} - y_1 \begin{pmatrix} 0 \\ \mathbf{a} \\ -1 \end{pmatrix} - y_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{K}\n\end{array}
$$

$$
-\max_{\mathbf{y}} \quad 0y_1 - y_2
$$
\ns.t.
$$
\begin{pmatrix} 0 \\ \mathbf{c} \\ 0 \end{pmatrix} - y_1 \begin{pmatrix} 0 \\ \mathbf{a} \\ -1 \end{pmatrix} - y_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{K}
$$

The correct answer is either of the last two formulations, or equivalent.

(b) We have that $\mathcal{K} = \mathcal{L}_n \times \mathbb{R}_+$, and thus $\mathcal{K}^* = \mathcal{L}_n^* \times \mathbb{R}_+^* = \mathcal{L}_n \times \mathbb{R}_+ = \mathcal{K}$.

(c) Considering

$$
-\max_{\mathbf{y}} \quad 0y_1 - y_2
$$

s.t.
$$
\begin{pmatrix} 0 \\ \mathbf{c} \\ 0 \end{pmatrix} - y_1 \begin{pmatrix} 0 \\ \mathbf{a} \\ -1 \end{pmatrix} - y_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{K}
$$

the dual problem is $-\min_{x,y,z} \sqrt{\left(\right)}$ 0 c 0 \setminus \vert , $\sqrt{ }$ $\overline{1}$ \overline{x} y z \setminus $\overline{1}$ \setminus s.t. $\frac{1}{2}$ \mathcal{L} 0 a −1 \setminus \vert , $\sqrt{ }$ \mathcal{L} \overline{x} y z \setminus $\overline{1}$ \setminus $= 0$ $\frac{1}{2}$ \mathcal{L} −1 0 $\overline{0}$ \setminus \vert , $\sqrt{ }$ \mathcal{L} \overline{x} y z \setminus $\overline{1}$ \setminus $=-1,$ $\sqrt{ }$ $\overline{1}$ \overline{x} y z \setminus $\Big\} \in \mathcal{K}^*$ This can be simplified to $\max_{x,\mathbf{y},z}$ – $\langle \mathbf{c}, \mathbf{y} \rangle$ s.t. $z = \langle \mathbf{a}, \mathbf{y} \rangle$ $x = 1, \quad z \ge 0, \quad ||\mathbf{y}||_2 \le x$ which in turn is equivalent to max y $\langle -c, y \rangle$ s.t. $\langle a, y \rangle \ge 0, \|y\|_2 \le 1.$ Alternative question: The problem is equivalent to $-\max_y -y$ s.t. $\mathbf{c} - y(-\mathbf{a}) \in \mathbb{R}^n_+$. The dual to this is $-\min_{\mathbf{x}} \langle \mathbf{c}, \mathbf{x} \rangle$ s.t. $\langle -\mathbf{a}, \mathbf{x} \rangle = -1, \mathbf{x} \in \mathbb{R}^n_+,$ which is equivalent to max_x $\langle -c, x \rangle$ s.t. $\langle a, x \rangle = 1, x \in \mathbb{R}_+^n$

7. Consider the following optimisation problem: [3 points]

$$
\min_{\mathbf{x}} \quad 2x_2^2 + 5x_1x_2 - 4x_2
$$
\n
$$
\text{s.t.} \quad 2x_1^2 + x_1 + 3x_2^2 - 2x_1x_2 = 3
$$
\n
$$
\mathbf{x} \in \mathbb{R}^2. \tag{A}
$$

Give the standard positive semidefinite approximation for this problem, the solution of which would provide a lower bound to the optimal value of problem (A).

7

Solution: This problem is equivalent to min x $\left\langle \begin{pmatrix} 0 & 5/2 \ 5/2 & 2 \end{pmatrix}, \mathbf{x} \mathbf{x}^\mathsf{T} \right\rangle$ $-4x_2$ s.t. $\left\langle \begin{pmatrix} 2 & -1 \ -1 & 3 \end{pmatrix}, \mathbf{x} \mathbf{x}^\mathsf{T} \right\rangle$ $+ x_1 = 3$ $\begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} \end{pmatrix}$ $\mathbf{x} \quad \mathbf{x} \mathbf{x}^{\mathsf{T}}$ $\Big) \in \mathcal{PSD}^3$ $\mathbf{x} \in \mathbb{R}^3$ which can be relaxed to min x,X $\left\langle \begin{pmatrix} 0 & 5/2 \ 5/2 & 2 \end{pmatrix}, \mathsf{X} \right.$ \setminus $-4x_2$ s.t. $\left\langle \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}, \mathsf{X} \right\rangle$ \setminus $+ x_1 = 3$ $\begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} \end{pmatrix}$ x X $\Big) \in \mathcal{PSD}^3$ $\mathbf{x} \in \mathbb{R}^3$

8. (Automatic additional points) [4 points]

Question: $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$ Total Points: 3 5 11 3 6 5 3 4 40

A copy of the lecture-sheets may be used during the examination. Good luck!