Exam: Continuous Optimisation 2015

1. Let f:C — R, C C R" convex, be a convex function. Show that then the following [3 points]
holds:

A local minimizer of f on C is a global minimizer on C. And a strict local minimizer
of f on C is a strict global minimizer on C.

Solution: for a local minimizer X: Suppose X is not a global minimiser. Then
with some y € C we have f(X) > f(y). Thus for 0 < A < 1 we find with
Xy = X + Ay — X) using convexity of f:

fx2) S FE)+AS(y) - f®] < fX)

So letting A — 0", X cannot be a local minimizer.

for a strict local minimizer X: Suppose it is not a strict global minimiser. Then
with some y € C,X # y we have f(X) > f(y). Thus for 0 < A <1 we find with
X) =X + Ay — X) using convexity of f:

fxN) < FE) + A (y) - f®)] < f(X)

So letting A — 0T, X cannot be a strict local minimizer.

2. (a) Show that for d € R” it holds: [2 points]
d'x>0vxeR" & d=0.

(b) Let c,a; € R"i=1,...,m (m > 1). Show using the Farkas Lemma (lecture [3 points]
sheets, Th. 5.1) that precisely one of the following alternatives (I) or (II) is
true:
(I): ¢'x<0, ajx<0,i=1,...,m has a solution x € R".
(IT):  there exist y; >0, ..., ft,, > 0 such that: ¢+ > ", wa; =0

Solution:
(a) cc:>a7:
d'x>0VxeR"= +d'e; >0Vj=d'e;=0Vj=d=0
“<:’7 :
d=0=d'x=0VxeR"=d'x>0VxeR"
(b) Considering a,,1; = ¢ and b = —e,,,1 € R™"! we have that (I) is equiva-
lent to:
(i): ajx <b;,i=1,...,(m+ 1) has a solution x.
By Farkas’ Lemma, precisely one of either (i) or the following statement,
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(i), is true:

(ii): Jy € R™*! such that 0 = 3.7 g2, 0> by,

This is equivalent to:

Jy € R7*! such that 0 =y, 1c + > vidy, 0> Y1,

which in turn is equivalent to (II).

3. Given is the problem

(P) m]iRn (—2z1 — x2) s.t. 21 <0, and — (z; —1)? — (2, — 1) +2<0.
x€R?

(a) Is (P) a convex problem? Sketch the feasible set and the level set of f given
by f(x) = f(X) with X = 0. Is LICQ (constraint qualification) satisfied at X?

(b) Show that the point X = 0 is a KKT-point of (P). Determine the corresponding
Lagrangean multipliers.

(c) Show that X is a local minimizer. What is the order of this minimizer? Is it a
global minimizer?

(d) Consider now the program (objective f and constraint function g, interchanged):

x€R2

Explain (without any further calculations) why X = 0 is also a local minimizer

of (P).

Solution:

(a) (P) is not a convex program since g is not convex: VZgy(x) = (_02_02) is
negative definite.

Ty

3

Feasible set

-1

Above is a sketch of the problem. The feasible set is coloured blue and the
level curve is coloured red.

(P) min —(z; — 1)* — (29 — 1)* + 2 s.t. 21 <0, and —2x —22<0.

[3 points]
[3 points]
[3 points]

[2 points]
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LICQ holds at x = O:

1 2
Vagi(x) = (0), Vg (X) = (2) are linearly independent

Give a complete sketch.

(b) The KKT condition for X = 0 (¢g; and g, active) read:

(55) #mo) +ru(3) =0

With (unique) solution p; = 1, us = 1/2.

(c) Since the assumptions of Th 5.13 are satisfied, X = 0 is a local minimizer
of order p = 1.
It is not a global minimizer since f(X) = 0 and e.g. for feasible x =
(0, x2), 3 > 2 we have f(0,25) — —o0 for zo — 00.

(d) The KKT condition at X = 0 for (P) directly yields a corresponding KKT

condition for (P) at X (feasible for (P)!!) which again satisfies the assump-
tion of Theorem 5.13 for (P).

4. Consider the (nonlinear) program: [3 points]

(P) m}in f(x) st xe F:={xeR"|ygx)<0,jeJ}

with f,g; € C*, f,g: R* = R, J ={1,...,m}. Let d; be a strictly feasible descent
direction for x; € F. Show that for ¢ > 0, small enough, it holds:

f(xp +tdy) < f(xx) and xy+tdy € F

Solution: By using Taylor around x; we find for j € Jy, (use Vg;(x;)"dy <
0; gj(xx) =0):

g;(xp+tdy) = g;(x)+tVg;(x1) Tdpto(t) = tVg;(x) "dp+o(t) <0 for t > 0 small enough.

By continuity also for j ¢ Jx, we have g;(x; +tdy) < 0 for ¢ > 0 small enough.
So x;, + td, € F. In view of Vf(x;)"dy < 0 we also find

f(xp +tdy) = f(xp) +tVf(x)Tdy +0(t) < f(x) for t > 0 small enough.
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5. For a given nonempty set A C R™ we define its conic hull, conic(.A) by

conic(A) := {Z p'x' o x'e A, pt >0foralli, m e N} :
i=1

(a) Show that conic(A) is a convex cone. [2 points]
(b) Show that if A C B C R™, with B being a convex cone, then conic(A) C B. [3 points]
(c) Show that conic(.A) is full dimensional if and only if there does not exist [1 point]

y € R"\ {0} such that (y,x) =0 for all x € A.

Solution:

(a) By Theorem 7.2, equivalently we want to show that for all u, v € conic(.A)
and A, A2 > 0 we have A\ju + \av € conic(A).

Considering an arbitrary u, v € conic(.4) and Ay, Ay > 0 we have

m p
u=>» ux, v=> vy’
i=1 i=1

for some x',...,x™ y',...,yP € A,
phyooo ™t P >0,
p,m € N.
Therefore
m p
Mu+Av=) \u'x'+) X'y € conic(A).
1 2 ZZI i,;t 121 io y (A)

(b) For k € N, let £F := {Zle pxt o xte A, pt >0 for all z} We will
prove by induction that £¥ C B for all £ € N, and thus B D Uren LF =
conic(A).

We start by proving the case of k = 1. If y € £! then y = ux for some
i >0 and x € A. We thus have x € B, and as B is a cone we have
y = ux € B.

We now suppose the statement is true for k, and show it is also true for
k+1. Ify € £¢ then y = ¥ 1ix? where x' € A and pé > 0 for all 4.

Letting z' = 2% | 2u'x’ € £¥ C B and 22 = 2u"t'xF1 € £ C B, the set
B being convex implies that B 2 %zl + %Z2 =y.
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Alternatively:
conic(A) = {Z wx' o x'e A, pt >0foralli, me N}
i=1

:{O}U{Z,uixi c x' e A, uiZOforalli,meN,)\:Zui>O}

i=1 i=1

:{o}u{AZ@iXi : X' €A 0> 0foralli, meN, 1= 6, A>0
i=1 i=1

= {0} UR,; conv(A) = R conv(A).
As B is convex, we have conv(.A) C B. As B is a cone we then get

B O R, conv(A) = conic(A).

(c) We will prove the equivalent statement that conic(.A) is not full dimensional
if and only if there exists y € R™\ {0} such that (y,x) =0 for all x € A.

(=) Suppose conic(A) is not full-dimensional. Then by definition 7.8.3
there exists y € R"\ {0} such that (y,x) = 0 for all x € conic.A. We
trivially have A4 C conic(A) and thus (y,x) = 0 for all x € A.

(<) Suppose there exists y € R" \ {0} such that (y,x) = 0 for all x € A.
Then for all z € conic(A) we have z = > | u'x" for some x' € A
and p' > 0 for all 4, m € N, and thus (y,z) = >./" u'(y,x") =
0. Therefore, by definition 7.8.3, we have that conic(.A) is not full-
dimensional.

}

6. In this question we will consider the proper cone K C R"*? defined as

T
K=4q[y] : yeR", z,z€R, [lyll2<z, 2>0
z
(a) Consider aray R = {c—yia |y € R.} with fixed a,c € R”. We wish to find [2 points]

the distance between the origin and the closest point in this ray. Formulate
this problem as a conic optimisation problem over A.

(b) Give an explicit characterisation of *. [1 point]
[Justification for your answer must be provided]
(c) What is the dual problem to your formulation in part (a)? [2 points]

[If you were not able to answer parts (a) and (b) then instead find the dual
to: min, y s.t. c+yacR}. ]
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Solution:

1

min 1o

min Yy
y
0
s. t. (¢
0

(c¢) Considering

(a) This problem is equivalent to the following problems

min e - yalls

s.t. |lc—walls <y, y1 = 0,

The correct answer is either of the last two formulations, or equivalent.

(b) We have that K = £, x R, and thus £* = £ xR} =L, xRy =K.

— max Oyl — Yo

ylzoa
-1
0 cK
0
-1
0 cK
0
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the dual problem is

0 x
— min < cl.,|y >
s 0 z
0 x
s. t. < al,ly > =0
—1 z
-1 T
< 0 | Y > = _17
0 z
x
y| eK”
z
This can be simplified to
max — (c,y)

:E’y7z

s.t. z=(a,y)
r=1, 2>0, |[y|<=

which in turn is equivalent to

mex (—c,y) st {ay) >0, |yll:<1.

Alternative question:

The problem is equivalent to —max, -y s.t. c—y(—a)eR".
The dual to this is —min, (c,x) s.t. (—a,x)=-1, xeRY,
which is equivalent to maxx (—c,x) s.t. (a,x)=1, xecR}

7. Consider the following optimisation problem:

. 2
m}:n 275 + 51129 — 429

s. t. 23:% + a1 + 3$§ —2x129 = 3
x € R

(A)

Give the standard positive semidefinite approximation for this problem, the solution
of which would provide a lower bound to the optimal value of problem (A).

[3 points]
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Solution: This problem is equivalent to

. 0 5/2 T
min <(5/2 2>,XX >—4a:2
2 -1
s. t. <(_1 3 ) ,XXT>—|—3§'1:

8. (Automatic additional points) [4 points]

Question: | 12| 3 |4|5]6|7|8]| Total

Points: 31511136534 ] 40

A copy of the lecture-sheets may be used during the examination.
Good luck!



