Exam: Continuous Optimisation 2015

- Let f: C → R, C ⊂ Rⁿ convex, be a convex function. Show that then the following [3 points] holds:
 A local minimizer of f on C is a global minimizer on C. And a strict local minimizer of f on C is a strict global minimizer on C.
- 2. (a) Show that for $\mathbf{d} \in \mathbb{R}^n$ it holds:

 $\mathbf{d}^{\mathsf{T}}\mathbf{x} \ge 0 \ \forall \mathbf{x} \in \mathbb{R}^n \quad \Leftrightarrow \quad \mathbf{d} = 0.$

- (b) Let $\mathbf{c}, \mathbf{a}_i \in \mathbb{R}^n, i = 1, ..., m \ (m \ge 1)$. Show using the Farkas Lemma (lecture sheets, Th. 5.1) that precisely one of the following alternatives (I) or (II) is true:
 - (I): $\mathbf{c}^{\mathsf{T}}\mathbf{x} < 0$, $\mathbf{a}_{i}^{\mathsf{T}}\mathbf{x} \leq 0, i = 1, ..., m$ has a solution $\mathbf{x} \in \mathbb{R}^{n}$. (II): there exist $\mu_{1} \geq 0, ..., \mu_{m} \geq 0$ such that: $\mathbf{c} + \sum_{i=1}^{m} \mu_{i} \mathbf{a}_{i} = 0$
- 3. Given is the problem
 - (P) $\min_{\mathbf{x}\in\mathbb{R}^2} (-2x_1 x_2)$ s.t. $x_1 \le 0$, and $-(x_1 1)^2 (x_2 1)^2 + 2 \le 0$.
 - (a) Is (P) a convex problem? Sketch the feasible set and the level set of f given [3 points] by $f(\mathbf{x}) = f(\overline{\mathbf{x}})$ with $\overline{\mathbf{x}} = 0$. Is LICQ (constraint qualification) satisfied at $\overline{\mathbf{x}}$?
 - (b) Show that the point $\overline{\mathbf{x}} = 0$ is a KKT-point of (P). Determine the corresponding [3 points] Lagrangean multipliers.
 - (c) Show that $\overline{\mathbf{x}}$ is a local minimizer. What is the order of this minimizer? Is it a [3 points] global minimizer?
 - (d) Consider now the program (objective f and constraint function g_2 interchanged): [2 points]

$$(\widetilde{P})$$
 min $_{\mathbf{x}\in\mathbb{R}^2} - (x_1 - 1)^2 - (x_2 - 1)^2 + 2$ s.t. $x_1 \le 0$, and $-2x_1 - x_2 \le 0$

Explain (without any further calculations) why $\overline{\mathbf{x}} = 0$ is also a local minimizer of (\widetilde{P}) .

4. Consider the (nonlinear) program:

(P)
$$\min_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $\mathbf{x} \in \mathcal{F} := {\mathbf{x} \in \mathbb{R}^n \mid g_j(\mathbf{x}) \le 0, \ j \in J}$

with $f, g_j \in C^1$, $f, g : \mathbb{R}^n \to \mathbb{R}$, $J = \{1, \ldots, m\}$. Let \mathbf{d}_k be a strictly feasible descent direction for $\mathbf{x}_k \in \mathcal{F}$. Show that for t > 0, small enough, it holds:

$$f(\mathbf{x}_k + t\mathbf{d}_k) < f(\mathbf{x}_k) \text{ and } \mathbf{x}_k + t\mathbf{d}_k \in \mathcal{F}$$

[3 points]

[2 points]

5. For a given nonempty set $\mathcal{A} \subseteq \mathbb{R}^n$ we define its conic hull, $\operatorname{conic}(\mathcal{A})$ by

$$\operatorname{conic}(\mathcal{A}) := \left\{ \sum_{i=1}^{m} \mu^{i} \mathbf{x}^{i} : \mathbf{x}^{i} \in \mathcal{A}, \ \mu^{i} \ge 0 \text{ for all } i, \ m \in \mathbb{N} \right\}.$$

- (a) Show that $\operatorname{conic}(\mathcal{A})$ is a convex cone.
- (b) Show that if $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathbb{R}^n$, with \mathcal{B} being a convex cone, then $\operatorname{conic}(\mathcal{A}) \subseteq \mathcal{B}$. [3 points]
- (c) Show that $\operatorname{conic}(\mathcal{A})$ is full dimensional if and only if there does not exist [1 point] $\mathbf{y} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $\langle \mathbf{y}, \mathbf{x} \rangle = 0$ for all $\mathbf{x} \in \mathcal{A}$.

6. In this question we will consider the proper cone $\mathcal{K} \subseteq \mathbb{R}^{n+2}$ defined as

$$\mathcal{K} = \left\{ \begin{pmatrix} x \\ \mathbf{y} \\ z \end{pmatrix} : \mathbf{y} \in \mathbb{R}^n, \ x, z \in \mathbb{R}, \ \|\mathbf{y}\|_2 \le x, \ z \ge 0 \right\}.$$

- (a) Consider a ray $\mathcal{R} = \{\mathbf{c} y_1 \mathbf{a} \mid y_1 \in \mathbb{R}_+\}$ with fixed $\mathbf{a}, \mathbf{c} \in \mathbb{R}^n$. We wish to find [2 points] the distance between the origin and the closest point in this ray. Formulate this problem as a conic optimisation problem over \mathcal{K} .
- (b) Give an explicit characterisation of \mathcal{K}^* . [1 point] [Justification for your answer must be provided]
- (c) What is the dual problem to your formulation in part (a)? [2 points] [If you were not able to answer parts (a) and (b) then instead find the dual to: $\min_y y$ s.t. $\mathbf{c} + y\mathbf{a} \in \mathbb{R}^n_+$.]
- 7. Consider the following optimisation problem:

$$\begin{array}{ll} \min_{\mathbf{x}} & 2x_2^2 + 5x_1x_2 - 4x_2 \\ \text{s. t.} & 2x_1^2 + x_1 + 3x_2^2 - 2x_1x_2 = 3 \\ & \mathbf{x} \in \mathbb{R}^2. \end{array} \tag{A}$$

Give the standard positive semidefinite approximation for this problem, the solution of which would provide a lower bound to the optimal value of problem (A).

8. (Automatic additional points)

Question:	1	2	3	4	5	6	7	8	Total
Points:	3	5	11	3	6	5	3	4	40

 $\mathbf{2}$

A copy of the lecture-sheets may be used during the examination. Good luck! [2 points]

[3 points]

[4 points]