Exam: Continuous Optimisation 2015

1. Let $f: \mathcal{C} \rightarrow \mathbb{R}, \mathcal{C} \subset \mathbb{R}^{n}$ convex, be a convex function. Show that then the following holds:
A local minimizer of f on \mathcal{C} is a global minimizer on \mathcal{C}. And a strict local minimizer of f on \mathcal{C} is a strict global minimizer on \mathcal{C}.
2. (a) Show that for $\mathbf{d} \in \mathbb{R}^{n}$ it holds:

$$
\mathbf{d}^{\top} \mathbf{x} \geq 0 \forall \mathbf{x} \in \mathbb{R}^{n} \quad \Leftrightarrow \quad \mathbf{d}=0
$$

(b) Let $\mathbf{c}, \mathbf{a}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m(m \geq 1)$. Show using the Farkas Lemma (lecture sheets, Th. 5.1) that precisely one of the following alternatives (I) or (II) is true:
(I): $\quad \mathbf{c}^{\top} \mathbf{x}<0, \quad \mathbf{a}_{i}^{\top} \mathbf{x} \leq 0, i=1, \ldots, m$ has a solution $\mathbf{x} \in \mathbb{R}^{n}$.
(II): there exist $\mu_{1} \geq 0, \ldots, \mu_{m} \geq 0$ such that: $\mathbf{c}+\sum_{i=1}^{m} \mu_{i} \mathbf{a}_{i}=0$
3. Given is the problem
(P) $\min _{\mathbf{x} \in \mathbb{R}^{2}}\left(-2 x_{1}-x_{2}\right) \quad$ s.t. $\quad x_{1} \leq 0$, and $-\left(x_{1}-1\right)^{2}-\left(x_{2}-1\right)^{2}+2 \leq 0$.
(a) Is (P) a convex problem? Sketch the feasible set and the level set of f given by $f(\mathbf{x})=f(\overline{\mathbf{x}})$ with $\overline{\mathbf{x}}=0$. Is LICQ (constraint qualification) satisfied at $\overline{\mathbf{x}}$?
(b) Show that the point $\overline{\mathbf{x}}=0$ is a KKT-point of (P). Determine the corresponding Lagrangean multipliers.
(c) Show that $\overline{\mathbf{x}}$ is a local minimizer. What is the order of this minimizer? Is it a global minimizer?
(d) Consider now the program (objective f and constraint function g_{2} interchanged):

$$
(\widetilde{P}) \quad \min _{\mathbf{x} \in \mathbb{R}^{2}}-\left(x_{1}-1\right)^{2}-\left(x_{2}-1\right)^{2}+2 \quad \text { s.t. } \quad x_{1} \leq 0, \text { and }-2 x_{1}-x_{2} \leq 0
$$

Explain (without any further calculations) why $\overline{\mathbf{x}}=0$ is also a local minimizer of (\widetilde{P}).
4. Consider the (nonlinear) program:
$(P) \quad \min _{\mathbf{x}} f(\mathbf{x}) \quad$ s.t. $\quad \mathbf{x} \in \mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid g_{j}(\mathbf{x}) \leq 0, j \in J\right\}$
with $f, g_{j} \in C^{1}, f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}, J=\{1, \ldots, m\}$. Let \mathbf{d}_{k} be a strictly feasible descent direction for $\mathbf{x}_{k} \in \mathcal{F}$. Show that for $t>0$, small enough, it holds:

$$
f\left(\mathbf{x}_{k}+t \mathbf{d}_{k}\right)<f\left(\mathbf{x}_{k}\right) \quad \text { and } \quad \mathbf{x}_{k}+t \mathbf{d}_{k} \in \mathcal{F}
$$

5. For a given nonempty set $\mathcal{A} \subseteq \mathbb{R}^{n}$ we define its conic hull, $\operatorname{conic}(\mathcal{A})$ by

$$
\operatorname{conic}(\mathcal{A}):=\left\{\sum_{i=1}^{m} \mu^{i} \mathbf{x}^{i}: \mathbf{x}^{i} \in \mathcal{A}, \mu^{i} \geq 0 \text { for all } i, m \in \mathbb{N}\right\}
$$

(a) Show that $\operatorname{conic}(\mathcal{A})$ is a convex cone.
(b) Show that if $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathbb{R}^{n}$, with \mathcal{B} being a convex cone, then $\operatorname{conic}(\mathcal{A}) \subseteq \mathcal{B}$.
(c) Show that $\operatorname{conic}(\mathcal{A})$ is full dimensional if and only if there does not exist $\mathbf{y} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that $\langle\mathbf{y}, \mathbf{x}\rangle=0$ for all $\mathbf{x} \in \mathcal{A}$.
6. In this question we will consider the proper cone $\mathcal{K} \subseteq \mathbb{R}^{n+2}$ defined as

$$
\mathcal{K}=\left\{\left(\begin{array}{l}
x \\
\mathbf{y} \\
z
\end{array}\right): \mathbf{y} \in \mathbb{R}^{n}, x, z \in \mathbb{R},\|\mathbf{y}\|_{2} \leq x, z \geq 0\right\}
$$

(a) Consider a ray $\mathcal{R}=\left\{\mathbf{c}-y_{1} \mathbf{a} \mid y_{1} \in \mathbb{R}_{+}\right\}$with fixed $\mathbf{a}, \mathbf{c} \in \mathbb{R}^{n}$. We wish to find the distance between the origin and the closest point in this ray. Formulate this problem as a conic optimisation problem over \mathcal{K}.
(b) Give an explicit characterisation of \mathcal{K}^{*}.
[Justification for your answer must be provided]
(c) What is the dual problem to your formulation in part (a)?
[If you were not able to answer parts (a) and (b) then instead find the dual to: $\quad \min _{y} y$ s.t. $\mathbf{c}+y \mathbf{a} \in \mathbb{R}_{+}^{n}$.
7. Consider the following optimisation problem:

$$
\begin{array}{ll}
\min _{\mathbf{x}} & 2 x_{2}^{2}+5 x_{1} x_{2}-4 x_{2} \\
\text { s.t. } & 2 x_{1}^{2}+x_{1}+3 x_{2}^{2}-2 x_{1} x_{2}=3 \tag{A}\\
& \mathbf{x} \in \mathbb{R}^{2} .
\end{array}
$$

Give the standard positive semidefinite approximation for this problem, the solution of which would provide a lower bound to the optimal value of problem (A).
8. (Automatic additional points)

Question:	1	2	3	4	5	6	7	8	Total
Points:	3	5	11	3	6	5	3	4	40

A copy of the lecture-sheets may be used during the examination. Good luck!

