
Exam: Continuous Optimisation 2016
Monday 12th December 2016

1. We will consider the first step in iterative methods from x0 =

(
0
1

)
to attempt to

minimise the function f : R2 → R, f(x) = 2x21 + x22 exp(x1)− x1 − x2 over R2.

(a) [2 points]Starting from x0, considering the direction of steepest descent, dS, as the
search direction and exact line search (i.e. λ0 ∈ arg minλ∈R{f(x0 + λdS)}),
evaluate x1 = x0 + λ0dS.

(b) [2 points]Starting from x0, considering Newton’s direction, dN , as the search direction
(not normalised), and λ0 = 1, evaluate x1 = x0 + dN .

Solution:

(a) We have

∇f(x) =

(
4x1 + x22 exp(x1)− 1

2x2 exp(x1)− 1

)
, ∇f(x0) =

(
0
1

)
, dS = −∇f(x0) = −

(
0
1

)
,

λ0 ∈ arg min
λ
{f(0, 1− λ)} = arg min

λ
{(1− λ− 1

2
)2 − 1

4
} = {1

2
}, λ0 = 1

2
,

x1 = x0 + λ0dS =

(
0

1/2

)
.

(
f(x0) = 0, f(x1) = −1/4

)

(b) We have

∇2f(x) =

(
4 + x22 exp(x1) 2x2 exp(x1)

2x2 exp(x1) 2 exp(x1)

)
, ∇2f(x0) =

(
5 2
2 2

)
,

[
∇2f(x0)

]−1
=

1

6

(
2 −2
−2 5

)
,

d0 = −
[
∇2f(x0)

]−1∇f(x0) = −1

6

(
2 −2
−2 5

)(
0
1

)
=

(
1/3
−5/6

)
,

x1 = x0 + λ0d0 =

(
1/3
1/6

)
.(

f(x1) = −5/18 + exp(1/3)/36 ≈ −0.239

)
,

As a point of interest, at global minimiser: x∗ ≈
(

0.199
0.410

)
and f(x∗) ≈ −0.325
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2. (a) [3 points]Consider two convex sets A ⊆ Rn and B ⊆ R, and two convex functions
h : A → B and g : B → R, with g also being a monotonically increasing
function on B.
For f : A → R given by f(x) = g(h(x)), show that f is a convex function.

(b) For a norm ‖ • ‖ on Rn and a convex function f : Rn → R, consider using the
barrier method to solve the problem minx{f(x) : ‖x‖ ≤ 1}.
Let F̂ = {x ∈ Rn : ‖x‖ < 1} and b : F̂ → R be given by b(x) = (1− ‖x‖)−2.

i. [1 point]Justify that b is a valid barrier function for this problem.

ii. [2 points]Show that b is a convex function.

Solution:

(a) Consider arbitrary x,y ∈ Rn and 0 ≤ λ ≤ 1. We need to show that

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We have

h(λx + (1− λ)y) ≤ λh(x) + (1− λ)h(y) as h is convex

g(h(λx + (1− λ)y)) ≤ g(λh(x) + (1− λ)h(y)) as g is monotonically increasing

g(λh(x) + (1− λ)h(y)) ≤ λg(h(x)) + (1− λ)g(h(y)) as g is convex

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) combining these inequalities.

(b) i. As norms are continuous, so is b. We also thus have that y ∈ bd(F̂)
if and only if ‖y‖ = 1, and thus limx∈F̂

x→y

b(x) =∞.

ii. Let A = F̂ and B = [0, 1), and consider the functions h : A → B and
g : B → R given by h(x) = ‖x‖ and g(y) = (1− y)−2.

We have that B is trivially a convex set, and A is a convex set by
Corollary 1.16.

We have that h is a convex function by Exercise 1.4

We have g′(y) = 2(1− y)−3 > 0 for all y ∈ B, and thus g is monotoni-
cally increasing.

We have g′′(y) = 6(1− y)−4 > 0 for all y ∈ B, and thus g is convex.

Therefore, by part (a) of this question, b is a convex function.

3. Consider the problem

min
x

x2

s. t. x21 ≤ x1 + x2 (P)

2x1 ≤ x21 + x2
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(a) [2 points]Is (P) a convex optimisation problem? Justify your answer.

(b) [2 points]Find a strictly feasible descent direction for the problem (P) at x̂ =

(
2
2

)
.

(c) i. [2 points]Show that the Linear Independency Constraint Qualification holds at all
feasible points of (P).

ii. [3 points]Find the KKT points for (P).

iii. [1 point]Given that the optimal solution to (P) is attained, find the global min-
imiser and optimal value to this problem. Justify your answer.

iv. [1 point]Provide justification for this global minimiser being a strict local minimiser
of order 1.

(d) [4 points]Formulate and solve the Lagrangian dual problem to (P). Is there strong
duality?

Solution:

(a) We have

f(x) = x2, ∇f(x) =

(
0
1

)
, ∇2f(x) =

(
0 0
0 0

)
,

g1(x) = x21 − x1 − x2, ∇g1(x) =

(
2x1 − 1
−1

)
, ∇2g1(x) =

(
2 0
0 0

)
,

g2(x) = 2x1 − x21 − x2, ∇g2(x) =

(
2− 2x1
−1

)
, ∇2g2(x) =

(
−2 0
0 0

)
,

There exists x ∈ R2 such that∇2g2(x) is not positive semidefinite, and thus
the problem is not convex. (In fact the matrix is not positive semidefinite
at all x ∈ R2.)

(b) At x̂ =

(
2
2

)
we have

∇f(x̂) =

(
0
1

)
,

g1(x̂) = 22 − 2− 2 = 0, ∇g1(x̂) =

(
2 ∗ 2− 1
−1

)
=

(
3
−1

)
,

g2(x̂) = 2 ∗ 2− 22 − 2 = −2 < 0.

The active set at x̂ is thus Jx̂ = {1}, and we are looking for h ∈ R2 such
that ∇f(x̂)Th < 0 and ∇g1(x̂)Th < 0. Equivalently, we want 3h1 < h2 <

0. For example, h =

(
−1
−2

)
is a strictly feasible descent direction at x̂.
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(c) i. We have

g1(x) = x21 − x1 − x2, ∇g1(x) =

(
2x1 − 1
−1

)
,

g2(x) = 2x1 − x21 − x2, ∇g2(x) =

(
2− 2x1
−1

)
.

Suppose for the sake of contradiction that LICQ does not hold at x.
Then we must have that Jx = {1, 2}, and ∇g1(x) and ∇g2(x) are not
linearly independent.

Therefore

(
2x1 − 1
−1

)
= µ

(
2− 2x1
−1

)
for some µ ∈ R, implying that

µ = 1 and 2x1−1 = 2−2x1, or equivalently x1 = 3/4. We have 1 ∈ Jx

and thus 0 = g1(x) = x21−x1−x2 = 9/16− 3/4−x2 = −3/16−x2, or
equivalently x2 = −3/16. Finally, as 2 ∈ Jx, we get the contradiction
0 = g2(x) = 2x1−x21−x2 = 3/2−9/16+3/16 = 24/16−9/16+3/16 =
18/16.(

Alternatively: If Jx = {1, 2} then 0 = g1(x) = x21 − x1 − x2 and

0 = g2(x) = 2x1−x21−x2. Therefore x21−x1 = 2x1−x21, or equivalently
0 = 2x21 − 3x1 = 2x1

(
x1 − 3

2

)
. We now consider two cases:

1. If x1 = 0 then x2 = x21 − x1 = 0. We then have ∇g1(x) =

(
−1
−1

)
and ∇g2(x) =

(
2
−1

)
, which are clearly linearly independent vec-

tors.

2. If x1 = 3/2 then x2 = x21 − x1 = 9/4 − 6/4 = 3/4. We then have

∇g1(x) =

(
2
−1

)
and ∇g2(x) =

(
−1
−1

)
, which are clearly linearly

independent vectors.

)
ii. We have that x ∈ R2 is a KKT point if it is feasible and there exists

λ ∈ R2
+ such that

0 = λ1g1(x),

0 = λ2g2(x),

∇f(x) = −λ1∇g1(x)− λ2∇g2(x).

We final equality is equivalent to(
0
1

)
= −λ1

(
2x1 − 1
−1

)
− λ2

(
2− 2x1
−1

)
,
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which is in turn equivalent to

0 = λ1(1− 2x1) + λ2(2x1 − 2),

1 = λ1 + λ2.

We now consider 3 cases:

1. λ1 = 0: Then we have λ2 = 1 − λ1 = 1 and 0 = λ1(1 − 2x1) +
λ2(2x1 − 2) = 2x1 − 2, implying that x1 = 1. As λ2 > 0 we also
require 0 = g2(x) = 2x1 − x21 − x2 = 2 − 1 − x2, implying that
x2 = 1. We then check g1(x) = x21−x1−x2 = 1−1−1 = −1 ≤ 0.

Therefore x =

(
1
1

)
is a KKT point, with multipliers λ =

(
0
1

)
.

2. λ2 = 0: Then we have λ1 = 1 − λ2 = 1 and 0 = λ1(1 − 2x1) +
λ2(2x1− 2) = 1− 2x1, implying that x1 = 1/2. As λ1 > 0 we also
require 0 = g1(x) = x21 − x1 − x2 = 1/4− 1/2− x2 = −1/4− x2,
implying that x2 = −1/4. We have g2(x) = 2x1 − x21 − x2 =
1−1/4+1/4 = 1 > 0. Therefore this point is infeasible, and there
is no KKT point in this case.

3. λ1, λ2 > 0: Then 0 = g1(x) = g2(x) and thus x21 − x1 = x2 =
2x1 − x21. Therefore 0 = 2x21 − 3x1 = 2x1(x1 − 3/2), and thus
x1 = 0 or x1 = 3/2. We consider these two cases separately:

(a) x1 = 0: Then x2 = x21−x1 = 0. We then have 1 = λ1 +λ2 and
0 = λ1(1 − 2x1) + λ2(2x1 − 2) = λ1 − 2λ2. This implies that

λ =

(
2/3
1/3

)
and x =

(
0
0

)
is a KKT point.

(b) x1 = 3/2: Then x2 = x21−x1 = 9/4−3/2 = 3/4. We then have
1 = λ1 + λ2 and 0 = λ1(1 − 2x1) + λ2(2x1 − 2) = −2λ1 + λ2.

This implies that λ =

(
1/3
2/3

)
and x =

(
3/2
3/4

)
is a KKT point.

iii. Two alternative answers:

1. Any global minimiser is also a local minimiser. As LICQ holds
everywhere in this problem, from Remark 5.11, a local minimiser
is also a KKT point. We have three KKT points as possible global
minimisers, and by comparison we have that the global minimiser

is x∗ =

(
0
0

)
, and the optimal value is zero.

2. For any x ∈ R2 feasible we have x2 ≥ x21 − x1 = x1(x1 − 1) ≥ 0
for x1 ∈ [0, 1] and x2 ≥ 2x1 − x21 = x1(2 − x1) > 0 for x1 /∈ [0, 2].
Therefore x2 ≥ 0 for all x feasible, with equality if and only if
x = 0.

iv. The conditions of Theorem 5.13 hold at x∗ =

(
0
0

)
, i.e. LICQ holds

and Jx = {1, 2}, and thus this is a strict local minimiser of order 1.
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(d) We have

L(x;y) = f(x) + y1g1(x) + y2g2(x)

= x2 + y1(x
2
1 − x1 − x2) + y2(2x1 − x21 − x2)

= (y1 − y2)x21 + (2y2 − y1)x1 + (1− y1 − y2)x2,

ψ(y) = inf
x∈R2

L(x;y).

We now consider the following four cases:

1. y1 + y2 6= 1: Then considering x2 → ±∞ we get ψ(y) = −∞.

2. y1 + y2 = 1 and y1 < y2: Then from the negative coefficient of the x21
term of L(x;y), we see that considering x1 →∞ we have ψ(y) = −∞.

3. y1 + y2 = 1 and y1 = y2: Then y1 = y2 = 1/2 and L(x;y) = x1/2.
Considering x1 → −∞, this implies that ψ(y) = −∞.

4. y1 + y2 = 1 and y1 > y2: Then

L(x;y) = (y1 − y2)x21 + (2y2 − y1)x1,

which, when considering y ∈ R2 fixed, is a quadratic function in x1
with a strictly positive coefficient on the x21 term. From the example
on the minimum of a Quadratic function from the slides, we then have

ψ(y) =
−(2y2 − y1)2

4(y1 − y2)
=
−(2− 3y1)

2

4(2y1 − 1)
.

The dual problem is thus

max
y∈R2

−(2y2 − y1)2

4(y1 − y2)
s. t. y1 + y2 = 1, y1 > y2 ≥ 0.

For all feasible points of this problem the objective function is less than or
equality to zero, with equality if and only if 2y2 = y1 = 1− y2. Therefore

the optimal solution to the dual problem is y =

(
2/3
1/3

)
, and its optimal

value is zero. We thus have strong duality.
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4. For n ∈ N, consider a proper cone L ⊆ Rn and a nonsingular matrix A ∈ Rn×n.
We then let K = AL := {Ax : x ∈ L} ⊆ Rn.

(a) [1 point]Show that K is a convex cone.

(b) [1 point]Show that K is pointed.

(c) [2 points]Find K∗, the dual cone to K, in terms of L∗.
(d) [2 points]Show that K∗ is pointed.

(e) [1 point]Show that K is a proper cone. (You may assume that K is closed.)

Solution:

(a) Consider arbitrary u,v ∈ K and λ ∈ R2
+. We need to show that λ1u +

λ2v ∈ K.

There exists x,y ∈ L such that u = Ax and v = Ay. As L is a convex
cone we have λ1x + λ2y ∈ L, and thus λ1u + λ2v = A(λ1x + λ2y) ∈ K.

(b) Consider an arbitrary u ∈ Rn such that ±u ∈ K. We need to show that
u = 0.

There exists x,y ∈ L such that u = Ax and −u = Ay. Therefore 0 =
u + (−u) = A(x + y) and x + y = A−10 = 0, or equivalently y = −x.
Therefore ±x ∈ L, implying that x = 0 and u = A0 = 0.

(c) K∗ = {y ∈ Rn : uTy ≥ 0 for all u ∈ K}
= {y ∈ Rn : (Ax)Ty ≥ 0 for all x ∈ L}
= {y ∈ Rn : xT(ATy) ≥ 0 for all x ∈ L}
= {y ∈ Rn : ATy ∈ L∗} = {A−Tz : z ∈ L∗} = A−TL∗

Any of the answers from the final line are correct.

(d) Three alternative proofs:

1. Consider arbitrary u ∈ Rn such that ±u ∈ K∗. We need to show that
u = 0.

As L is a proper cone, so is L∗.
We have ATu ∈ L∗ and −(ATu) = AT(−u) ∈ L∗, and thus ATu = 0.
Therefore u = A−T0 = 0.

2. Consider arbitrary u ∈ Rn such that ±u ∈ K∗. We need to show that
u = 0.

As ±u ∈ K∗ we have 〈u,y〉 ≥ 0 and 〈−u,y〉 ≥ 0 for all y ∈ K, and
thus 〈u,y〉 = 0 for all y ∈ K.

Therefore 0 = 〈u,Ax〉 = uTAx = (ATu)Tx for all x ∈ L, and as
L is full dimensional, this implies that 0 = ATu and we get the
contradiction 0 = A−TATu = u.
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3. We will show the equivalent result that K is full-dimensional.

As L is full dimensional there exists linearly independent vectors
x1, . . . ,xn ∈ L. Then letting ui = Axi for all i, we have u1, . . . ,un ∈
K. The proof is completed if we can show that u1, . . . ,un are linearly
independent.

Suppose for the sake of contradiction that u1, . . . ,un are not lin-
early independent. Then ∃λ ∈ Rn \ {0} such that 0 =

∑
i=1 λiui =

A(
∑n

i=1 λixi). Therefore 0 = A−10 =
∑

i=1 λixi. As x1, . . . ,xn are
linearly independent, this implies the contradiction λ = 0.

(e) From Definition 7.9, K is a proper cone if it is a closed convex cone which
is pointed and full dimensional.

We can assume that K is a closed set, and from part (a) we have that K
is a convex cone.

From part (b) we have that K is a pointed set.

From part (d) we have that K∗ is a pointed set, and thus by Theorem 8.11,
we have that K is full-dimensional.

5. For b ∈ Rm and A1, . . . ,Am ∈ Sn, consider the problem of varying y ∈ Rm in
order to minimise bTy, with the constraint that all the eigenvalues of

∑m
i=1 yiAi are

between minus one and plus two.

(a) [2 points]Formulate this problem as a conic optimisation problem in a standard form.

(b) [2 points]Find the dual problem to this conic optimisation problem.

If you were unable to solve part (a), then as an alternative question to (b): Find
the dual problem to maxy{bTy : ( c, C ) +

∑m
i=1 yi ( ai, Ai ) ∈ Rp

+×PSDn},
with the vectors c, a1, . . . , am ∈ Rp and the matrix C ∈ Sn.

Solution:

(a)
min
y

bTy

s. t. − I �
m∑
i=1

yiAi � 2I

−max
y

− bTy

s. t. ( I, 2I )−
m∑
i=1

yi ( − Ai, Ai ) ∈ PSDn × PSDn
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Equivalent answer:
−max

y
− bTy

s. t.

(
I O
O 2I

)
−

m∑
i=1

yi

(
−Ai O
O Ai

)
∈ PSD2n

(b) −min
V,W

〈( I, 2I ),X〉

s. t. 〈( − Ai, Ai ),X〉 = −bi for all i = 1, . . . ,m

X ∈ PSDn × PSDn,

max
V,W

− 〈I,V〉 − 2〈I,W〉

s. t. − 〈Ai,V〉+ 〈Ai,W〉 = −bi for all i = 1, . . . ,m

V,W ∈ PSDn.

Equivalent answer:

max
X

−
〈(

I O
O 2I

)
,X

〉
s. t.

〈(
−Ai O
O Ai

)
,X

〉
= −bi for all i = 1, . . . ,m

X ∈ PSD2n.

Solution to alternative question:

max
y

bTy

s. t. ( c, C )−
m∑
i=1

yi ( − ai, − Ai ) ∈ Rp
+ × PSDn

min
x,X

〈c,x〉+ 〈C,X〉

s. t. − 〈ai,x〉 − 〈Ai,X〉 = bi for all i = 1, . . . ,m

x ∈ Rp
+, X ∈ PSDn.

6. [4 points](Automatic additional points)

Question: 1 2 3 4 5 6 Total

Points: 4 6 15 7 4 4 40

A copy of the lecture-sheets may be used during the examination. You may
use any results from the lecture slides in your answers (Lemmas, Theorems,
Corollaries, Exercises, etc.), however you should reference the result.
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Good Luck!

Hints:

1. g is a monotonically increasing function on B ⊆ R if for all a, b ∈ B with a ≤ b
we have g(a) ≤ g(b).

2. If g is differentiable in B ⊆ R then g is a monotonically increasing function on B
if and only if g′(z) ≥ 0 for all z ∈ B.

3. One of the properties of a norm is that it is a continuous function.

4.

(
a b
b c

)−1
= 1
ac− b2

(
c −b
−b a

)
5. The following are equivalent for A ∈ Rn×n:

• A is a nonsingular matrix;

• A has an inverse matrix;

• AT has an inverse matrix.
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