Exam: Continuous Optimisation 2016

Monday 12^{th} December 2016

1. We will consider the first step in iterative methods from $\mathbf{x}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to attempt to minimise the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(\mathbf{x}) = 2x_1^2 + x_2^2 \exp(x_1) - x_1 - x_2$ over \mathbb{R}^2 .

- (a) Starting from \mathbf{x}_0 , considering the direction of steepest descent, \mathbf{d}_S , as the [2 points] search direction and exact line search (i.e. $\lambda_0 \in \arg \min_{\lambda \in \mathbb{R}} \{f(\mathbf{x}_0 + \lambda \mathbf{d}_S)\})$, evaluate $\mathbf{x}_1 = \mathbf{x}_0 + \lambda_0 \mathbf{d}_S$.
- (b) Starting from \mathbf{x}_0 , considering Newton's direction, \mathbf{d}_N , as the search direction [2 points] (not normalised), and $\lambda_0 = 1$, evaluate $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{d}_N$.

Solution:

(a) We have

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 4x_1 + x_2^2 \exp(x_1) - 1\\ 2x_2 \exp(x_1) - 1 \end{pmatrix}, \quad \nabla f(\mathbf{x}_0) = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad \mathbf{d}_S = -\nabla f(\mathbf{x}_0) = -\begin{pmatrix} 0\\ 1 \end{pmatrix}, \\ \lambda_0 \in \arg\min_{\lambda} \{f(0, 1 - \lambda)\} = \arg\min_{\lambda} \{(1 - \lambda - \frac{1}{2})^2 - \frac{1}{4}\} = \{\frac{1}{2}\}, \quad \lambda_0 = \frac{1}{2}, \\ \mathbf{x}_1 = \mathbf{x}_0 + \lambda_0 \mathbf{d}_S = \begin{pmatrix} 0\\ 1/2 \end{pmatrix}. \quad \left(f(\mathbf{x}_0) = 0, \quad f(\mathbf{x}_1) = -1/4\right)$$

(b) We have

$$\nabla^{2} f(\mathbf{x}) = \begin{pmatrix} 4 + x_{2}^{2} \exp(x_{1}) & 2x_{2} \exp(x_{1}) \\ 2x_{2} \exp(x_{1}) & 2 \exp(x_{1}) \end{pmatrix}, \qquad \nabla^{2} f(\mathbf{x}_{0}) = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix},$$
$$\left[\nabla^{2} f(\mathbf{x}_{0})\right]^{-1} = \frac{1}{6} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix},$$
$$\mathbf{d}_{0} = -\left[\nabla^{2} f(\mathbf{x}_{0})\right]^{-1} \nabla f(\mathbf{x}_{0}) = -\frac{1}{6} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ -5/6 \end{pmatrix},$$
$$\mathbf{x}_{1} = \mathbf{x}_{0} + \lambda_{0} \mathbf{d}_{0} = \begin{pmatrix} 1/3 \\ 1/6 \end{pmatrix}.$$
$$\left(f(\mathbf{x}_{1}) = -5/18 + \exp(1/3)/36 \approx -0.239\right),$$

As a point of interest, at global minimiser: $\mathbf{x}^* \approx \begin{pmatrix} 0.199\\ 0.410 \end{pmatrix}$ and $f(\mathbf{x}^*) \approx -0.325$

2. (a) Consider two convex sets $\mathcal{A} \subseteq \mathbb{R}^n$ and $\mathcal{B} \subseteq \mathbb{R}$, and two convex functions $h: \mathcal{A} \to \mathcal{B}$ and $q: \mathcal{B} \to \mathbb{R}$, with q also being a monotonically increasing function on \mathcal{B} .

For $f : \mathcal{A} \to \mathbb{R}$ given by $f(\mathbf{x}) = g(h(\mathbf{x}))$, show that f is a convex function.

(b) For a norm $\| \bullet \|$ on \mathbb{R}^n and a convex function $f : \mathbb{R}^n \to \mathbb{R}$, consider using the barrier method to solve the problem $\min_{\mathbf{x}} \{ f(\mathbf{x}) : \|\mathbf{x}\| \le 1 \}$. $\mathbb{D}^n \parallel \parallel \cdot 1 \mid 1 \mid \widehat{D}$ 1() (1 ||| ||| -2 $\widehat{\tau}$ ſ T.

Let
$$\mathcal{F} = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| < 1\}$$
 and $b : F \to \mathbb{R}$ be given by $b(\mathbf{x}) = (1 - \|\mathbf{x}\|)^{-1}$.

- i. Justify that b is a valid barrier function for this problem.
- ii. Show that b is a convex function.

Solution:

(a) Consider arbitrary $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $0 \le \lambda \le 1$. We need to show that

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

We have

$$\begin{aligned} h(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) &\leq \lambda h(\mathbf{x}) + (1 - \lambda)h(\mathbf{y}) & \text{as } h \text{ is convex} \\ g(h(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})) &\leq g(\lambda h(\mathbf{x}) + (1 - \lambda)h(\mathbf{y})) & \text{as } g \text{ is monotonically increasing} \\ g(\lambda h(\mathbf{x}) + (1 - \lambda)h(\mathbf{y})) &\leq \lambda g(h(\mathbf{x})) + (1 - \lambda)g(h(\mathbf{y})) & \text{as } g \text{ is convex} \\ f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) &\leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) & \text{combining these inequalities.} \end{aligned}$$

i. As norms are continuous, so is b. We also thus have that $\mathbf{y} \in \mathrm{bd}(\widehat{\mathcal{F}})$ (b)if and only if $\|\mathbf{y}\| = 1$, and thus $\lim_{\mathbf{x}\in\widehat{\mathcal{F}}} b(\mathbf{x}) = \infty$.

- ii. Let $\mathcal{A} = \widehat{\mathcal{F}}$ and $\mathcal{B} = [0, 1)$, and consider the functions $h : \mathcal{A} \to \mathcal{B}$ and $g: \mathcal{B} \to \mathbb{R}$ given by $h(\mathbf{x}) = \|\mathbf{x}\|$ and $g(y) = (1-y)^{-2}$. We have that \mathcal{B} is trivially a convex set, and \mathcal{A} is a convex set by Corollary 1.16. We have that h is a convex function by Exercise 1.4 We have $g'(y) = 2(1-y)^{-3} > 0$ for all $y \in \mathcal{B}$, and thus g is monotonically increasing. We have $q''(y) = 6(1-y)^{-4} > 0$ for all $y \in \mathcal{B}$, and thus g is convex. Therefore, by part (a) of this question, b is a convex function.
- 3. Consider the problem

$$\begin{array}{ll}
\min_{\mathbf{x}} & x_2 \\
\text{s. t.} & x_1^2 \le x_1 + x_2 \\
& 2x_1 \le x_1^2 + x_2
\end{array} \tag{P}$$

[1 point]

[2 points]

[3 points]

(a) Is (P) a convex optimisation problem? Justify your answer.	[2 points]
(b) Find a strictly feasible descent direction for the problem (P) at $\widehat{\mathbf{x}} = \begin{pmatrix} 2\\ 2 \end{pmatrix}$.	[2 points]
(c) i. Show that the Linear Independency Constraint Qualification holds at all feasible points of (P).	[2 points]
ii. Find the KKT points for (P).	[3 points]
iii. Given that the optimal solution to (P) is attained, find the global min- imiser and optimal value to this problem. Justify your answer.	[1 point]

- iv. Provide justification for this global minimiser being a strict local minimiser [1 point] of order 1.
- (d) Formulate and solve the Lagrangian dual problem to (P). Is there strong [4 points] duality?

Solution:

(a) We have

$$f(\mathbf{x}) = x_2, \qquad \nabla f(\mathbf{x}) = \begin{pmatrix} 0\\1 \end{pmatrix}, \qquad \nabla^2 f(\mathbf{x}) = \begin{pmatrix} 0\\0 & 0 \end{pmatrix}, g_1(\mathbf{x}) = x_1^2 - x_1 - x_2, \qquad \nabla g_1(\mathbf{x}) = \begin{pmatrix} 2x_1 - 1\\-1 \end{pmatrix}, \qquad \nabla^2 g_1(\mathbf{x}) = \begin{pmatrix} 2 & 0\\0 & 0 \end{pmatrix}, g_2(\mathbf{x}) = 2x_1 - x_1^2 - x_2, \qquad \nabla g_2(\mathbf{x}) = \begin{pmatrix} 2 - 2x_1\\-1 \end{pmatrix}, \qquad \nabla^2 g_2(\mathbf{x}) = \begin{pmatrix} -2 & 0\\0 & 0 \end{pmatrix},$$

There exists $\mathbf{x} \in \mathbb{R}^2$ such that $\nabla^2 g_2(\mathbf{x})$ is not positive semidefinite, and thus the problem is not convex. (In fact the matrix is not positive semidefinite at all $\mathbf{x} \in \mathbb{R}^2$.)

(b) At $\hat{\mathbf{x}} = \begin{pmatrix} 2\\ 2 \end{pmatrix}$ we have

$$\nabla f(\widehat{\mathbf{x}}) = \begin{pmatrix} 0\\1 \end{pmatrix},$$

$$g_1(\widehat{\mathbf{x}}) = 2^2 - 2 - 2 = 0, \qquad \nabla g_1(\widehat{\mathbf{x}}) = \begin{pmatrix} 2*2-1\\-1 \end{pmatrix} = \begin{pmatrix} 3\\-1 \end{pmatrix},$$

$$g_2(\widehat{\mathbf{x}}) = 2*2 - 2^2 - 2 = -2 < 0.$$

The active set at $\hat{\mathbf{x}}$ is thus $\mathcal{J}_{\hat{\mathbf{x}}} = \{1\}$, and we are looking for $\mathbf{h} \in \mathbb{R}^2$ such that $\nabla f(\hat{\mathbf{x}})^\mathsf{T} \mathbf{h} < 0$ and $\nabla g_1(\hat{\mathbf{x}})^\mathsf{T} \mathbf{h} < 0$. Equivalently, we want $3h_1 < h_2 < 0$. For example, $\mathbf{h} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ is a strictly feasible descent direction at $\hat{\mathbf{x}}$.

(c)i. We have $g_1(\mathbf{x}) = x_1^2 - x_1 - x_2, \qquad \nabla g_1(\mathbf{x}) = \begin{pmatrix} 2x_1 - 1 \\ -1 \end{pmatrix},$ $g_2(\mathbf{x}) = 2x_1 - x_1^2 - x_2, \qquad \nabla g_2(\mathbf{x}) = \begin{pmatrix} 2 - 2x_1 \\ -1 \end{pmatrix}.$ Suppose for the sake of contradiction that LICQ does not hold at \mathbf{x} . Then we must have that $\mathcal{J}_{\mathbf{x}} = \{1, 2\}$, and $\nabla g_1(\mathbf{x})$ and $\nabla g_2(\mathbf{x})$ are not linearly independent. Therefore $\begin{pmatrix} 2x_1 - 1 \\ -1 \end{pmatrix} = \mu \begin{pmatrix} 2 - 2x_1 \\ -1 \end{pmatrix}$ for some $\mu \in \mathbb{R}$, implying that $\mu = 1$ and $2x_1 - 1 = 2 - 2x_1$, or equivalently $x_1 = 3/4$. We have $1 \in \mathcal{J}_{\mathbf{x}}$ and thus $0 = g_1(\mathbf{x}) = x_1^2 - x_1 - x_2 = 9/16 - 3/4 - x_2 = -3/16 - x_2$, or equivalently $x_2 = -3/16$. Finally, as $2 \in \mathcal{J}_{\mathbf{x}}$, we get the contradiction $0 = q_2(\mathbf{x}) = 2x_1 - x_1^2 - x_2 = 3/2 - 9/16 + 3/16 = 24/16 - 9/16 + 3/16 = 24/16 - 9/16 + 3/16 = 24/16 - 9/16 + 3/16 = 3/16 + 3/16 = 3/16 = 3/16 = 3/16 + 3/16 = 3/1$ 18/16.Alternatively: If $\mathcal{J}_{\mathbf{x}} = \{1, 2\}$ then $0 = g_1(\mathbf{x}) = x_1^2 - x_1 - x_2$ and $0 = g_2(\mathbf{x}) = 2x_1 - x_1^2 - x_2$. Therefore $x_1^2 - x_1 = 2x_1 - x_1^2$, or equivalently $0 = 2x_1^2 - 3x_1 = 2x_1(x_1 - \frac{3}{2})$. We now consider two cases: 1. If $x_1 = 0$ then $x_2 = x_1^2 - x_1 = 0$. We then have $\nabla g_1(\mathbf{x}) = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ and $\nabla g_2(\mathbf{x}) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, which are clearly linearly independent vectors. 2. If $x_1 = 3/2$ then $x_2 = x_1^2 - x_1 = 9/4 - 6/4 = 3/4$. We then have $\nabla g_1(\mathbf{x}) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and $\nabla g_2(\mathbf{x}) = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, which are clearly linearly independent vectors. ii. We have that $\mathbf{x} \in \mathbb{R}^2$ is a KKT point if it is feasible and there exists $\boldsymbol{\lambda} \in \mathbb{R}^2_+$ such that $0 = \lambda_1 q_1(\mathbf{x}),$ $0 = \lambda_2 q_2(\mathbf{x}),$ $\nabla f(\mathbf{x}) = -\lambda_1 \nabla q_1(\mathbf{x}) - \lambda_2 \nabla q_2(\mathbf{x}).$

We final equality is equivalent to

$$\begin{pmatrix} 0\\1 \end{pmatrix} = -\lambda_1 \begin{pmatrix} 2x_1 - 1\\-1 \end{pmatrix} - \lambda_2 \begin{pmatrix} 2 - 2x_1\\-1 \end{pmatrix},$$

which is in turn equivalent to

$$0 = \lambda_1 (1 - 2x_1) + \lambda_2 (2x_1 - 2), 1 = \lambda_1 + \lambda_2.$$

We now consider 3 cases:

- 1. $\underline{\lambda_1 = 0}$: Then we have $\lambda_2 = 1 \lambda_1 = 1$ and $0 = \lambda_1(1 2x_1) + \overline{\lambda_2(2x_1 2)} = 2x_1 2$, implying that $x_1 = 1$. As $\lambda_2 > 0$ we also require $0 = g_2(\mathbf{x}) = 2x_1 x_1^2 x_2 = 2 1 x_2$, implying that $x_2 = 1$. We then check $g_1(\mathbf{x}) = x_1^2 x_1 x_2 = 1 1 1 = -1 \leq 0$. Therefore $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is a KKT point, with multipliers $\boldsymbol{\lambda} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- 2. $\frac{\lambda_2 = 0}{\lambda_2(2x_1 2)}$ Then we have $\lambda_1 = 1 \lambda_2 = 1$ and $0 = \lambda_1(1 2x_1) + \lambda_2(2x_1 2) = 1 2x_1$, implying that $x_1 = 1/2$. As $\lambda_1 > 0$ we also require $0 = g_1(\mathbf{x}) = x_1^2 x_1 x_2 = 1/4 1/2 x_2 = -1/4 x_2$, implying that $x_2 = -1/4$. We have $g_2(\mathbf{x}) = 2x_1 x_1^2 x_2 = 1 1/4 + 1/4 = 1 > 0$. Therefore this point is infeasible, and there is no KKT point in this case.
- 3. $\frac{\lambda_1, \lambda_2 > 0}{2x_1 x_1^2}$. Then $0 = g_1(\mathbf{x}) = g_2(\mathbf{x})$ and thus $x_1^2 x_1 = x_2 = \frac{1}{2x_1 x_1^2}$. Therefore $0 = 2x_1^2 3x_1 = 2x_1(x_1 3/2)$, and thus $x_1 = 0$ or $x_1 = 3/2$. We consider these two cases separately:
 - (a) $\underline{x_1 = 0}$: Then $x_2 = x_1^2 x_1 = 0$. We then have $1 = \lambda_1 + \lambda_2$ and $\overline{0} = \lambda_1(1 2x_1) + \lambda_2(2x_1 2) = \lambda_1 2\lambda_2$. This implies that $\boldsymbol{\lambda} = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}$ and $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a KKT point.
 - (b) $x_1 = 3/2$: Then $x_2 = x_1^2 x_1 = 9/4 3/2 = 3/4$. We then have $\overline{1 = \lambda_1 + \lambda_2}$ and $0 = \lambda_1(1 2x_1) + \lambda_2(2x_1 2) = -2\lambda_1 + \lambda_2$. This implies that $\boldsymbol{\lambda} = \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix}$ and $\mathbf{x} = \begin{pmatrix} 3/2 \\ 3/4 \end{pmatrix}$ is a KKT point.
- iii. Two alternative answers:
 - 1. Any global minimiser is also a local minimiser. As LICQ holds everywhere in this problem, from Remark 5.11, a local minimiser is also a KKT point. We have three KKT points as possible global minimisers, and by comparison we have that the global minimiser is $\mathbf{x}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, and the optimal value is zero.
 - 2. For any $\mathbf{x} \in \mathbb{R}^2$ feasible we have $x_2 \ge x_1^2 x_1 = x_1(x_1 1) \ge 0$ for $x_1 \in [0, 1]$ and $x_2 \ge 2x_1 - x_1^2 = x_1(2 - x_1) > 0$ for $x_1 \notin [0, 2]$. Therefore $x_2 \ge 0$ for all \mathbf{x} feasible, with equality if and only if $\mathbf{x} = \mathbf{0}$.

iv. The conditions of Theorem 5.13 hold at $\mathbf{x}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, i.e. LICQ holds and $\mathcal{J}_{\mathbf{x}} = \{1, 2\}$, and thus this is a strict local minimiser of order 1.

(d) We have $\begin{aligned} L(\mathbf{x}; \mathbf{y}) &= f(\mathbf{x}) + y_1 g_1(\mathbf{x}) + y_2 g_2(\mathbf{x}) \\ &= x_2 + y_1 (x_1^2 - x_1 - x_2) + y_2 (2x_1 - x_1^2 - x_2) \\ &= (y_1 - y_2) x_1^2 + (2y_2 - y_1) x_1 + (1 - y_1 - y_2) x_2, \\ \psi(\mathbf{y}) &= \inf_{\mathbf{x} \in \mathbb{R}^2} L(\mathbf{x}; \mathbf{y}). \end{aligned}$

We now consider the following four cases:

- 1. $y_1 + y_2 \neq 1$: Then considering $x_2 \to \pm \infty$ we get $\psi(\mathbf{y}) = -\infty$.
- 2. $\underline{y_1 + y_2 = 1}$ and $\underline{y_1 < y_2}$: Then from the negative coefficient of the x_1^2 term of $L(\mathbf{x}; \mathbf{y})$, we see that considering $x_1 \to \infty$ we have $\psi(\mathbf{y}) = -\infty$.
- 3. $\underline{y_1 + y_2 = 1}$ and $\underline{y_1 = y_2}$: Then $y_1 = y_2 = 1/2$ and $L(\mathbf{x}; \mathbf{y}) = x_1/2$. Considering $x_1 \to -\infty$, this implies that $\psi(\mathbf{y}) = -\infty$.
- 4. $y_1 + y_2 = 1$ and $y_1 > y_2$: Then

$$L(\mathbf{x}; \mathbf{y}) = (y_1 - y_2)x_1^2 + (2y_2 - y_1)x_1$$

which, when considering $\mathbf{y} \in \mathbb{R}^2$ fixed, is a quadratic function in x_1 with a strictly positive coefficient on the x_1^2 term. From the example on the minimum of a Quadratic function from the slides, we then have

$$\psi(\mathbf{y}) = \frac{-(2y_2 - y_1)^2}{4(y_1 - y_2)} = \frac{-(2 - 3y_1)^2}{4(2y_1 - 1)}.$$

The dual problem is thus

$$\max_{\mathbf{y}\in\mathbb{R}^2} \quad \frac{-(2y_2 - y_1)^2}{4(y_1 - y_2)}$$

s.t. $y_1 + y_2 = 1, \qquad y_1 > y_2 \ge 0.$

For all feasible points of this problem the objective function is less than or equality to zero, with equality if and only if $2y_2 = y_1 = 1 - y_2$. Therefore the optimal solution to the dual problem is $\mathbf{y} = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}$, and its optimal value is zero. We thus have strong duality.

- 4. For $n \in \mathbb{N}$, consider a proper cone $\mathcal{L} \subseteq \mathbb{R}^n$ and a nonsingular matrix $\mathsf{A} \in \mathbb{R}^{n \times n}$. We then let $\mathcal{K} = \mathsf{A}\mathcal{L} := \{\mathsf{A}\mathbf{x} : \mathbf{x} \in \mathcal{L}\} \subseteq \mathbb{R}^n$.
 - (a) Show that \mathcal{K} is a convex cone.
 - (b) Show that \mathcal{K} is pointed.
 - (c) Find \mathcal{K}^* , the dual cone to \mathcal{K} , in terms of \mathcal{L}^* .
 - (d) Show that \mathcal{K}^* is pointed.
 - (e) Show that \mathcal{K} is a proper cone. (You may assume that \mathcal{K} is closed.)

Solution:

(a) Consider arbitrary $\mathbf{u}, \mathbf{v} \in \mathcal{K}$ and $\boldsymbol{\lambda} \in \mathbb{R}^2_+$. We need to show that $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} \in \mathcal{K}$.

There exists $\mathbf{x}, \mathbf{y} \in \mathcal{L}$ such that $\mathbf{u} = A\mathbf{x}$ and $\mathbf{v} = A\mathbf{y}$. As \mathcal{L} is a convex cone we have $\lambda_1 \mathbf{x} + \lambda_2 \mathbf{y} \in \mathcal{L}$, and thus $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} = A(\lambda_1 \mathbf{x} + \lambda_2 \mathbf{y}) \in \mathcal{K}$.

(b) Consider an arbitrary $\mathbf{u} \in \mathbb{R}^n$ such that $\pm \mathbf{u} \in \mathcal{K}$. We need to show that $\mathbf{u} = \mathbf{0}$.

There exists $\mathbf{x}, \mathbf{y} \in \mathcal{L}$ such that $\mathbf{u} = A\mathbf{x}$ and $-\mathbf{u} = A\mathbf{y}$. Therefore $\mathbf{0} = \mathbf{u} + (-\mathbf{u}) = A(\mathbf{x} + \mathbf{y})$ and $\mathbf{x} + \mathbf{y} = A^{-1}\mathbf{0} = \mathbf{0}$, or equivalently $\mathbf{y} = -\mathbf{x}$. Therefore $\pm \mathbf{x} \in \mathcal{L}$, implying that $\mathbf{x} = \mathbf{0}$ and $\mathbf{u} = A\mathbf{0} = \mathbf{0}$.

(c) $\mathcal{K}^* = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{u}^\mathsf{T} \mathbf{y} \ge 0 \text{ for all } \mathbf{u} \in \mathcal{K} \}$ $= \{ \mathbf{y} \in \mathbb{R}^n : (\mathbf{A}\mathbf{x})^\mathsf{T} \mathbf{y} \ge 0 \text{ for all } \mathbf{x} \in \mathcal{L} \}$ $= \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{x}^\mathsf{T} (\mathbf{A}^\mathsf{T} \mathbf{y}) \ge 0 \text{ for all } \mathbf{x} \in \mathcal{L} \}$ $= \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{A}^\mathsf{T} \mathbf{y} \in \mathcal{L}^* \} = \{ \mathbf{A}^{-\mathsf{T}} \mathbf{z} : \mathbf{z} \in \mathcal{L}^* \} = \mathbf{A}^{-\mathsf{T}} \mathcal{L}^*$

Any of the answers from the final line are correct.

- (d) Three alternative proofs:
 - 1. Consider arbitrary $\mathbf{u} \in \mathbb{R}^n$ such that $\pm \mathbf{u} \in \mathcal{K}^*$. We need to show that $\mathbf{u} = \mathbf{0}$.

As \mathcal{L} is a proper cone, so is \mathcal{L}^* .

We have $A^T \mathbf{u} \in \mathcal{L}^*$ and $-(A^T \mathbf{u}) = A^T(-\mathbf{u}) \in \mathcal{L}^*$, and thus $A^T \mathbf{u} = \mathbf{0}$. Therefore $\mathbf{u} = A^{-T}\mathbf{0} = \mathbf{0}$.

2. Consider arbitrary $\mathbf{u} \in \mathbb{R}^n$ such that $\pm \mathbf{u} \in \mathcal{K}^*$. We need to show that $\mathbf{u} = \mathbf{0}$.

As $\pm \mathbf{u} \in \mathcal{K}^*$ we have $\langle \mathbf{u}, \mathbf{y} \rangle \ge 0$ and $\langle -\mathbf{u}, \mathbf{y} \rangle \ge 0$ for all $\mathbf{y} \in \mathcal{K}$, and thus $\langle \mathbf{u}, \mathbf{y} \rangle = 0$ for all $\mathbf{y} \in \mathcal{K}$.

Therefore $0 = \langle \mathbf{u}, A\mathbf{x} \rangle = \mathbf{u}^{\mathsf{T}} A\mathbf{x} = (A^{\mathsf{T}}\mathbf{u})^{\mathsf{T}}\mathbf{x}$ for all $\mathbf{x} \in \mathcal{L}$, and as \mathcal{L} is full dimensional, this implies that $\mathbf{0} = A^{\mathsf{T}}\mathbf{u}$ and we get the contradiction $\mathbf{0} = A^{-\mathsf{T}}A^{\mathsf{T}}\mathbf{u} = \mathbf{u}$.

7

- [1 point]
- [1 point]
- [2 points]
- [2 points]
- [1 point]

3. We will show the equivalent result that K is full-dimensional. As L is full dimensional there exists linearly independent vectors x₁,..., x_n ∈ L. Then letting u_i = Ax_i for all i, we have u₁,..., u_n ∈ K. The proof is completed if we can show that u₁,..., u_n are linearly independent. Suppose for the sake of contradiction that u₁,..., u_n are not linearly independent. Then ∃λ ∈ ℝⁿ \ {0} such that 0 = ∑_{i=1} λ_iu_i = A(∑_{i=1}ⁿ λ_ix_i). Therefore 0 = A⁻¹0 = ∑_{i=1} λ_ix_i. As x₁,..., x_n are linearly independent, this implies the contradiction λ = 0.
(e) From Definition 7.9, K is a proper cone if it is a closed convex cone which is pointed and full dimensional. We can assume that K is a closed set, and from part (a) we have that K is a convex cone. From part (b) we have that K is a pointed set.

From part (d) we have that \mathcal{K}^* is a pointed set, and thus by Theorem 8.11, we have that \mathcal{K} is full-dimensional.

- 5. For $\mathbf{b} \in \mathbb{R}^m$ and $A_1, \ldots, A_m \in S^n$, consider the problem of varying $\mathbf{y} \in \mathbb{R}^m$ in order to minimise $\mathbf{b}^\mathsf{T} \mathbf{y}$, with the constraint that all the eigenvalues of $\sum_{i=1}^m y_i A_i$ are between minus one and plus two.
 - (a) Formulate this problem as a conic optimisation problem in a standard form.
 - (b) Find the dual problem to this conic optimisation problem.

If you were unable to solve part (a), then as an alternative question to (b): Find the dual problem to $\max_{\mathbf{y}} \{ \mathbf{b}^{\mathsf{T}} \mathbf{y} : (\mathbf{c}, \mathsf{C}) + \sum_{i=1}^{m} y_i (\mathbf{a}_i, \mathsf{A}_i) \in \mathbb{R}^p_+ \times \mathcal{PSD}^n \},$ with the vectors $\mathbf{c}, \mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^p$ and the matrix $\mathsf{C} \in \mathcal{S}^n$.

Solution:

[2 points]

Equivalent answer:

$$\begin{array}{rcl}
-\max_{\mathbf{y}} & -\mathbf{b}^{\mathsf{T}}\mathbf{y} \\
\text{s.t.} & \begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & 2\mathbf{I} \end{pmatrix} - \sum_{i=1}^{m} y_i \begin{pmatrix} -\mathbf{A}_i & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_i \end{pmatrix} \in \mathcal{PSD}^{2n} \\
\end{array}$$
(b)

$$\begin{array}{rcl}
-\min_{\mathbf{V},\mathbf{W}} & \langle (\mathbf{I}, 2\mathbf{I}), \mathbf{X} \rangle \\
\text{s.t.} & \langle (-\mathbf{A}_i, \mathbf{A}_i), \mathbf{X} \rangle = -b_i \text{ for all } i = 1, \dots, m \\
\mathbf{X} \in \mathcal{PSD}^n \times \mathcal{PSD}^n, \\
\end{array}$$

$$\begin{array}{rcl}
\max_{\mathbf{V},\mathbf{W}} & -\langle \mathbf{I}, \mathbf{V} \rangle - 2\langle \mathbf{I}, \mathbf{W} \rangle \\
\text{s.t.} & -\langle \mathbf{A}_i, \mathbf{V} \rangle + \langle \mathbf{A}_i, \mathbf{W} \rangle = -b_i \text{ for all } i = 1, \dots, m \\
\mathbf{V}, \mathbf{W} \in \mathcal{PSD}^n. \\
\end{array}$$
Equivalent answer:

$$\begin{array}{rcl}
\max_{\mathbf{X}} & -\langle \begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & 2\mathbf{I} \end{pmatrix}, \mathbf{X} \rangle \\
\text{s.t.} & \langle \begin{pmatrix} (-\mathbf{A}_i & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_i \end{pmatrix}, \mathbf{X} \rangle = -b_i \text{ for all } i = 1, \dots, m \\
\mathbf{X} \in \mathcal{PSD}^{2n}. \\
\end{array}$$
Solution to alternative question:

$$\begin{array}{rc}
\max_{\mathbf{y}} & \mathbf{b}^{\mathsf{T}}\mathbf{y} \\
\text{s.t.} & (\mathbf{c}, \mathbf{C}) - \sum_{i=1}^{m} y_i (-\mathbf{a}_i, -\mathbf{A}_i) \in \mathbb{R}_+^p \times \mathcal{PSD}^n \\
\end{array}$$

$$\begin{array}{rc}
\min_{\mathbf{x},\mathbf{X}} & \langle \mathbf{c}, \mathbf{x} \rangle + \langle \mathbf{C}, \mathbf{X} \rangle \\
\text{s.t.} & -\langle \mathbf{a}_i, \mathbf{x} \rangle - \langle \mathbf{A}_i, \mathbf{X} \rangle = b_i \text{ for all } i = 1, \dots, m \\
\mathbf{x} \in \mathbb{R}_+^p, \mathbf{X} \in \mathcal{PSD}^n. \\
\end{array}$$

6. (Automatic additional points)

Question:	1	2	3	4	5	6	Total
Points:	4	6	15	7	4	4	40

A copy of the lecture-sheets may be used during the examination. You may use any results from the lecture slides in your answers (Lemmas, Theorems, Corollaries, Exercises, etc.), however you should reference the result. [4 points]

Good Luck!

Hints:

- 1. g is a monotonically increasing function on $\mathcal{B} \subseteq \mathbb{R}$ if for all $a, b \in \mathcal{B}$ with $a \leq b$ we have $g(a) \leq g(b)$.
- 2. If g is differentiable in $\mathcal{B} \subseteq \mathbb{R}$ then g is a monotonically increasing function on \mathcal{B} if and only if $g'(z) \geq 0$ for all $z \in \mathcal{B}$.
- 3. One of the properties of a norm is that it is a continuous function.

4.
$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}^{-1} = \frac{1}{ac - b^2} \begin{pmatrix} c & -b \\ -b & a \end{pmatrix}$$

- 5. The following are equivalent for $A \in \mathbb{R}^{n \times n}$:
 - A *is a nonsingular matrix;*
 - A has an inverse matrix;
 - A^T has an inverse matrix.