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Exam Continuous Optimization
24 January 2022, 13.30–16.30

This closed-book exam consists of 5 questions. Please start each question on a new page, write legibly,
and hand in your work with the solutions in the correct order. Good luck!

1. (5 points) Let
f(x1, x2) = x21 − x22.

Compute the Newton direction ∆xnt of f at (1, 2) and show this is not a descent direction.

Solution: We have

∇f(1, 2) =

(
2
−4

)
and

∇2f(1, 2) =

(
2 0
0 −2

)
.

So

∆xnt = −∇2f(1, 2)−1∇f(1, 2) = −
(

0.5 0
0 −0.5

)(
2
−4

)
=

(
−1
−2

)
and

∇f(1, 2)T∆xnt =

(
2
−4

)T(−1
−2

)
= 6 ≥ 0,

so ∆xnt is not a descent direction.

2. (10 points) Consider the equality constrained least squares problem

minimize ‖Ax− b‖22
subject to Cx = d,

Explain how (and why) we can use the KKT optimality conditions to solve this problem by solving
a single linear system.

Solution: The objective function can be written as

xTATAx− 2bTAx+ bTb,

and hence is convex by the second-order condition for convexity (the Hessian 2ATA is positive
semidefinite). It follows that Slater’s condition holds if and only if the problem is feasible.
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Since the functions defining the problem are differentiable, if Slater’s condition holds, then a
vector x is optimal if and only if there exists a vector ν such that the KKT conditions hold:

• Cx = d

• 2ATAx− 2ATb+ CTν = 0

We can write this as the linear system(
2ATA CT

C 0

)(
x
ν

)
=

(
2ATb
d

)
.

If this system has a solution, then Slater’s condition holds and the KKT conditions hold, hence
x is optimal. If this system does not have a solution, then the problem is infeasible.

3. (10 points) Derive the Lagrangian, Lagrange dual function, and the Lagrange dual problem of the
following optimization problem in x and y:

minimize −
m∑
i=1

log(yi)

subject to y = b−Ax

Solution: The Lagrangian is

L(x, y, ν) = −
m∑
i=1

log(yi) + νT(y +Ax− b).

The dual function is

g(ν) = inf
x,y

(
−

m∑
i=1

log(yi) + νT(y +Ax− b)

)

The terms in x are unbounded below if ATν 6= 0 and the terms in y are unbounded below unless
ν � 0. If ν � 0, then the optimal y is given by yi = 1/νi. So the dual function is

g(ν) =

{∑m
i=1 log(νi) +m− bTν ATν = 0, ν � 0

−∞ otherwise.

So the dual problem is

maximize
m∑
i=1

log(νi) +m− bTν

subject to ATν = 0,

ν � 0.



Continuous Optimization 2021/2022 page 3 of 5 24 January 2022, 13.30–16.30

4. (a) (7 points) Consider the function

F (x, y) = x3 +
1

xy
,

where we view addition, multiplication, taking the reciprocal, and taking the third power as
elementary functions. Show how ∇F (1, 2) is computed using reverse-mode automatic differen-
tiation by drawing the appropriate diagrams.

Solution:

(b) (3 points) Give the cost function for training a neural network using supervised learning, and
explain why reverse-mode automatic differentiation is used here.

Solution: The cost function is

C(W (1), . . . ,W (L), b(1), . . . , b(L)) =
1

2N

N∑
i=1

‖f(xi)− yi)‖22,

where (x1, y1), . . . , (xN , yN ) is the training set, and where f(xi) represents the evaluation
at xi of the neural network with weights W (1), . . . ,W (L) and biases b(1), . . . , b(L). Note
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that in practice we sum over a random batch of training samples as opposed to all training
samples.
The cost function is a highly nested function of the weights and biases, and it maps a
high dimensional space into a one dimensional space. For (stochastic) gradient descent we
need to compute many gradients of this function. For this reverse-mode (since the input
dimensional is much larger than the output dimension) automatic differentiation is much
faster than symbolic differentiation.

5. Consider the barrier method for an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

where the functions f0, . . . , fm are convex and twice continuously differentiable. Assume the problem
has an optimal solution x∗ with objective p∗. Assume furthermore the problem is strictly feasible.

(a) (7 points) Show that if x∗(t) is optimal for the centering problem with parameter t, then

f0(x
∗(t))− p∗ ≤ m

t
.

Solution: The centering problem is

minimize tf0(x)−
m∑
i=1

log(−fi(x)).

The stationarity condition for the centering problem is

t∇f0(x) +
m∑
i=1

1

−fi(x)
∇fi(x) = 0.

Define
λi =

1

−tfi(x∗(t))
.

Then λ ≥ 0, so

p∗ = f0(x
∗)

≥ g(λ)

= inf
x

(
f0(x) +

m∑
i=1

λifi(x)

)

=
1

t
inf
x

(
tf0(x) +

m∑
i=1

1

−fi(x∗(t))
fi(x)

)

=
1

t
(tf0(x

∗(t))−m)

= f0(x
∗(t)− m

t
.

Alternatively, one can give a proof completely on the primal side using the first-order con-
ditions for convexity for the functions f0, . . . , fm.
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(b) (3 points) Suppose m = 1000 and we apply the barrier method with parameters µ = 2, ε = 1,
and with 1 as the initial value for t. After approximately how many outer iterations does the
barrier method terminate?

Solution: At each outer iteration we multiple t by µ, so after approximately 10 iterations
we get m/t < ε.

End of test


