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Re-exam Continuous Optimization

22 February 2021, 14.00–17.00

The exam consists of 5 questions. In total you can obtain 90 points. The final grade is 1 + #points/10
rounded to the nearest integer.

This is an open-book exam. It is NOT allowed to discuss with anyone else. If you have any questions
regarding the exam, or technical questions regarding uploading of your answer, please contact David de
Laat at d.delaat@tudelft.nl.

Please review the instructions posted on the announcement page for the course. The most important
points are repeated below:

• Write your answers by hand and start each exercise on a new sheet.

• On your first answer sheet, you should write the following statement: “This exam will be solely
undertaken by myself, without any assistance from others, and without use of sources other than
those allowed.”

• When scanning your work place your student ID on the first page. If you do not have a student ID
please use some other form of identification but in that case make sure only your name and photo
are visible.

• Scan your work and submit it as one single pdf-file at 17.00.

• You should keep an eye on your email from 17.00-17.30 because you can be asked to join the zoom
call for a random check.

Good luck!
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1. Let α > 0 and consider the function f defined by

f(x1, x2) = x21 + 2x22 + α sin(x2).

(a) (6 points) Find the gradient descent search direction ∆x at x = (1, 0).

Solution: We have

∇f(x) =

(
2x1

4x2 + α cos(x2)

)
so

∆x = −∇f(1, 0) = −
(

2
α

)
=

(
−2
−α

)
.

(b) (6 points) For which values of α is the function f convex?

Solution: Since the domain of f is all of R2, by the second-order condition for convexity
f is convex if and only if ∇2f(x) is positive semidefinite for all x. We have

∇2f(x) =

(
2 0
0 4− α sin(x2)

)
so

∇2f(x) � 0

for all x ∈ R2 if and only if −4 ≤ α ≤ 4.

(c) (6 points) Suppose α = 1. What is the next iterate after one step of Newton’s method starting
from x = (1, 0)?

Solution: We have

∆xnt = −∇2f(1, 0)−1∇f(1, 0) =

(
2 0
0 4

)−1(−2
−1

)
=

(
−1
−1/4

)
.

Afrer applying one step of the (pure) Newton method we get

x = (1, 0) + (−1,−1/4) = (0,−1/4).

(With backtracking we get the same solution.)
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2. Let n be a positive integer and consider the optimization problem

minimize
n∑
i=1

x2i

subject to
n∑
i=1

xi ≥ 1.

(a) (12 points) Derive the Lagrangian, Lagrange dual function, and Lagrange dual problem.

Solution: The Lagrangian is

L(x, λ) =

n∑
i=1

x2i + λ

(
1−

n∑
i=1

xi

)
.

We have
∇xL(x, λ) = 2x− λ1

so the minimum of L(x, λ) over x is attained at x = λ
21, and

g(λ) = inf
x
L(x, λ) =

nλ2

4
+ λ(1− nλ

2
) = λ− nλ2

4
.

The Lagrange dual problem is

maximize λ− nλ2

4
subject to λ ≥ 0.

(b) (6 points) Give optimal primal and dual solutions and show they are optimal.

Solution: Let x = 1
n1 and λ = 2/n. Then the primal and dual objective values are both

1/n, so by weak duality both solutions are optimal.
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3. (a) (12 points) Suppose
F (x) = f(g(x) + h(x))

with f(x) = x2, g(x) = 1/x, and h(x) = x3. Show how F ′(1) can be computed using reverse-
mode automatic differentiation (a.k.a. backpropagation). Show two separate diagrams for the
forward and backward phases.

(b) (6 points) Explain why reverse-mode automatic differentiation can be much faster than com-
puting and evaluating the symbolic derivative even for problems with only 1 variable.

Solution: Consider for instance the function F (x) = f1(. . . (fn(x)) . . .). Evaluating F ′(1)
when F ′(x) is expressed by its symbolic derivative needs roughly

∑n
i=1 i ≈ n2 evaluations

of the functions f1, . . . , fn and their derivatives. Reverse-mode automatic differentiation
needs only 2n such evaluations.
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4. Consider the primal-dual interior point method as discussed in class (and in the book) with the
parameter µ = 2. We apply this to the problem

minimize x41 + x2

subject to 1− x1 − x2 ≤ 0.

Suppose the the current primal-dual iterate is (x, λ) with x = (1, 1) and λ = 1.

(a) (6 points) Compute the surrogate duality gap. Explain why this implies x and λ as given above
cannot both be optimal.

Solution: We have
η̂(x, λ) = −(1− x1 − x2)λ = 1.

Since strong duality holds (easily checked using Slater’s condition), complementary slack-
ness implies that if x and λ would be optimal, then η̂(x, λ) = 0.

(b) (9 points) Compute the primal-dual search direction ∆ypd = (∆xpd,∆λpd).

Solution: We have
t =

µm

η̂
=

2

1
= 2,

so

rdual = ∇f0(x) +Df(x)Tλ =

(
4
1

)
+

(
−1
−1

)
=

(
3
0

)
and

rcent = −diag(λ)f(x)− 1

t
1 = −λ(1− x1 − x2)−

1

t
= 1− 1

2
=

1

2
.

The system (
∇2f0(x) + λ∇2f1(x) Df(x)T

−λDf(x) −f1(x)

)(
∆xpd
∆λpd

)
= −

(
rdual
rcent

)
reduces to 12 0 −1

0 0 −1
1 1 1

(∆xpd
∆λpd

)
= −

 3
0

1/2

 ,

with solution
∆xpd = (−1/4,−1/4) and ∆λpd = 0.

(c) (3 points) Show that ∆xpd is a primal descent direction and explain the value of ∆λpd.

Solution: We have

−∇f0(x)T∆xpd = −
(
4 1

)(−1/4
−1/4

)
= 5/4 > 0.

Furthermore, ∆λpd = 0 because λ = 1 is already dual optimal (which follows immediately
from the stationarity condition).
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5. Let Q ∈ Rn×n be a symmetric matrix and consider the nonconvex optimization problem

minimize xTQx

subject to ‖x‖22 = 1.

(a) (6 points) Express the optimal value of this problem in terms of the eigenvalue(s) of Q.

Solution: This problem can be solved in many different ways. Easiest way is probably
using the stationarity condition.

(b) (6 points) We apply the penalty method to obtain the unconstrained problem

minimize xTQx+ α(‖x‖22 − 1)2

where α > 0 is the penalty parameter. Show the optimal solution is an eigenvector of Q.

Solution: Let f(x) = xTQx + α(‖x‖22 − 1)2. Since f(x) → ∞ as ‖x‖2 → ∞, the
minimum is attained at a critical point. We have

∇f(x) = 2Qx+ 4α(‖x‖22 − 1)x,

so the critical points are eigenvectors.

(c) (6 points) Show that as α→∞, the vector x∗α converges to a feasible solution of the original
constrained problem by showing that the following inequalities hold:

λmin(Q)

2α
≤ 1− ‖x∗α‖2 ≤

λmax(Q)

2α
.

Here λmax(Q) and λmin(Q) are the largest and smallest eigenvalues of Q.

Solution: We have

Qx∗α = −2α(‖x∗α‖22 − 1)x∗α = 2α(1− ‖x∗α‖22)x∗α.

This shows
λmin(Q) ≤ 2α(1− ‖x∗α‖22) ≤ λmax(Q)

so
λmin(Q)

2α
≤ 1− ‖x∗α‖2 ≤

λmax(Q)

2α
.


