Examination: Continuous Optimization

January 14, 2013, 13.30-16.30 3TU- and LNMB-course, Utrecht,

Ex. 1

- (a) Let $0 \neq a \in \mathbb{R}^n$ be given. Show that the matrix $A := aa^T$ is positive semidefinite and has
- (b) For a symmetric $(n \times n)$ -matrix C show:

C is positive definite \iff $C \bullet A > 0$ holds for all positive semidefinite matrices $A \neq 0$ (Here, for $C = (c_{ij})$, $A = (a_{ij})$, $C \bullet A$ denotes the inner product $C \bullet A = \sum_{i,j} c_{ij} \cdot a_{ij}$.)

Ex. 2 Let $f: \mathbb{R}^m \to \mathbb{R}$ be a convex function f(y) on \mathbb{R}^m and let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ be given.

- (a) Show that the function g(x) := f(Ax + b) is a convex function of x on \mathbb{R}^n .
- (b) Suppose that f is strictly convex. Show that then g(x) := f(Ax + b) is strictly convex if and only if A has (full) rank n.

Hint: Recall that f is strictly convex if for any $y_1 \neq y_2$, $0 < \lambda < 1$ it holds: $f(\lambda y_1 + (1 - \lambda)y_2) < \lambda f(y_1) + (1 - \lambda)f(y_2).$

Ex. 3 We consider the convex program:

(CO)
$$\min_{x \in \mathbb{R}^2} e^{-x_2}$$
 s.t. $\sqrt{x_1^2 + x_2^2} - x_1 \le 0$

- (a) Show that (CO) is a convex program. Show that the feasible set \mathcal{F} is given by $\mathcal{F} =$ $\{(x_1, x_2) \mid x_1 \ge 0, x_2 = 0\}$ and determine (all) minimizers of (CO).
- (b) Analyse the Wolfe dual (WD) and the Lagrangian dual (D) of (CO) and show that for the corresponding optimal values we have: $v(WD) = -\infty < v(D) = 0 < v(CO) = 1$. (Hint for analyzing (D): Show that for any fixed x_2 it follows: $\inf_{x_1 \in \mathbb{R}} \sqrt{x_1^2 + x_2^2} - x_1 = 0$.)

Ex. 4

(a) Consider with
$$0 \neq c \in \mathbb{R}^2$$
 the program:
$$(P_0): \quad \max_{x \in \mathbb{R}^2} c^T x \quad \text{st.} \quad x \in \mathcal{F} := \{(x_1, x_2) \mid x_1^2 + x_2^2 \leq 1\}.$$

Give the extreme points of the feasible set \mathcal{F} and determine the maximizer of (P_0) . Sketch the problem (feasible set, maximizer, level set of c^Tx) and indicate that every point $x \in \mathcal{F}$ can be written as a convex combination of extreme points of \mathcal{F} .

(b) Let $f: \mathcal{F} \to \mathbb{R}$ be convex on a given compact convex set $\mathcal{F} \subset \mathbb{R}^n$ and consider the problem:

$$(P): \max f(x) \text{ st. } x \in \mathcal{F}.$$

Show that the maximum value of (P) is always (also) attained at some extreme point of \mathcal{F} .

Hint: Use the Krein-Milman theorem and Jensen's inequality.

Ex. 5

Consider the unconstrained minimization problem $\min_{x \in \mathbb{R}^n} q(x)$ on \mathbb{R}^n with the quadratic function $q(x) := \frac{1}{2}x^TAx + b^Tx$, where A is a positive definite $n \times n$ -matrix.

Determine the (global) minimizer \overline{x} of q on \mathbb{R}^n .

For given point $x_0 \neq \overline{x}$, show that the "Newton direction" $d := -[\nabla^2 q(x_0)]^{-1} \nabla q(x_0)$ is a descent direction (for q in x_0).

Show furthermore that the Newton iteration step $x_0 \to x_1$ (for minimizing q) yields the minimizer \overline{x} (in one step).

Hint: Recall that A is positive definite if and only if A^{-1} *is positive definite.*

Ex. 6 Consider the constrained minimization problem:

$$(P): \qquad \min_{x \in \mathbb{R}^2} \ x_1 + x_2 \quad \text{ s.t. } \quad -x_1^2 - x_2 \leq 0 \quad \text{ and } \quad -x_1 \leq 0 \ .$$

- (a) Compute all KKT-points of (P).
- (b) Show that $\overline{x} := 0$ is a strict local minimizer of order 1. Is \overline{x} the global minimizer? (explain)

Points: 36+4=40

1	a	:	2	2	a	:	3	3	a	:	3	4	a	:	3	5	:	4	6	a	:	3
	b	:	4		b	:	4		b	:	4		b	:	3					b	:	3

A copy of the lecture-sheets may be used during the examination. Good luck!