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Exam Continuous Optimization

18 January 2021, 14.00–17.00

The exam consists of 4 questions. In total you can obtain 90 points. The final grade is 1 + #points/10
rounded to the nearest integer.

This is an open-book exam. It is NOT allowed to discuss with anyone else. If you have any questions
regarding the exam, or technical questions regarding uploading of your answer, please contact David de
Laat at d.delaat@tudelft.nl.

Please review the instructions posted on the announcement page for the course. The most important
points are repeated below:

• Write your answers by hand and start each exercise on a new sheet.

• On your first answer sheet, you should write the following statement: “This exam will be solely
undertaken by myself, without any assistance from others, and without use of sources other than
those allowed.”

• When scanning your work place your student ID on the first page. If you do not have a student ID
please use some other form of identification but in that case make sure only your name and photo
are visible.

• Scan your work and submit it as one single pdf-file at 17.00.

• You should keep an eye on your email from 17.00-18.00 because you can be asked to join the zoom
call for a random check.

Good luck!
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1. Consider the optimization problem

minimize f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m,

Ax = b.

where f0, . . . , fm are convex and twice-continuously differentiable on Rn.

(a) (6 points) Show Slater’s condition holds if there exist feasible points x1, . . . , xm ∈ Rn with
fi(xi) < 0 for i = 1, . . . ,m.

Solution: Let x = (x1 + . . .+ xn)/n. Then,

Ax = A(x1 + . . .+ xn)/n = (Ax1 + . . .+Axn)/n = b

and
fi(x) = fi((x1 + . . .+ xn)/n) ≤ (fi(x1) + . . .+ fi(xn))/n < 0

for all i = 1, . . . ,m. This shows x is a strictly feasible point. Since the problem is convex
and admits a strictly feasible point, Slater’s condition holds.

(b) (6 points) Use the second-order condition for convexity to show that the barrier functional

φ(x) = −
m∑
i=1

log(−fi(x))

is convex.

Solution: The domain of φ is the set of all x with fi(x) < 0 for all i = 1, . . . ,m. Since
the functions f1, . . . , fm are convex, this open set is convex. For x in the domain of φ we
have

∇2φ(x) =
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x).

The first part
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T

is positive semidefinite because it is a conic combination of outer products (which are
positive semidefinite). The second part

m∑
i=1

1

−fi(x)
∇2fi(x)

is positive semidefinite because it is a conic combination of positive semidefinite matrices,
since the Hessians ∇2fi are positive semidefinite because the functions f1, . . . , fm are
convex.
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(c) (6 points) The barrier (or centralizer) problem for a given t is defined as

minimize tf0(x) + φ(x)

subject to Ax = b.

Write down the Lagrangian and the KKT conditions for this problem.

Solution: The Lagrangian:

L(x, ν) = tf0(x) + φ(x) + νT (Ax− b).

The KKT conditions:

• Ax = b

• t∇f0(x) +
∑m

i=1
1

−fi(x)
∇fi(x) +ATν = 0.

• (Optionally one can explicitly state x has to lie in the domain of the objective.)

(d) (6 points) The optimal solution to the barrier (or centralizer) problem is denoted by x∗(t) and
for t > 0 these solutions form a path called the central path. Explain how the tangent vector
dx∗(t)/dt to the central path can be computed. (Hint: use the KKT conditions form (c).)

Solution: The KKT conditions give

Ax∗(t) = b

and
t∇f0(x∗(t)) +∇φ(x∗(t)) +AT ν̂(t) = 0.

Implicit differentiation with respect to t gives

A
dx∗(t)

dt
= 0

and
∇f0(x∗(t)) + (t∇2f0(x

∗(t)) +∇2φ(x∗(t)))
dx∗(t)

dt
+AT dν̂(t)

dt
= 0.

This can be written as the linear system(
t∇2f0(x

∗(t)) +∇2φ(x∗(t)) AT

A 0

)(
dx∗(t)/dt
dν̂(t)/dt

)
=

(
−∇f0(x∗(t))

0

)
,

so we can compute the tangent vector by solving this system.
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2. Consider the unconstrained optimization problem

minimize f(x),

where f : Rn → R is strongly convex and continuously differentiable on Rn.

(a) (6 points) Give an example of a strongly convex function f with n = 2 for which gradient
descent performs badly but Newton’s method works well. Why does gradient descent perform
badly for this example? Why does Newton’s method work well for this example?

Solution: Let f(x1, x2) = 105

2 x
2
1 + 1

2x
2
2. Then the Hessian is ∇2f(x) =

(
105 0
0 1

)
, which

has condition number 105. Gradient descent does not work well because the level sets are
higly eccentric ellipses, so that the gradient vectors at most points are almost orthogonal
to the vector pointing in the direction of the minimizer (0, 0). For most initial points this
will result in a zig-zag behaviour. The convergence rate is almost equal to 1 is this case.
Newton’s method converges in one step for a quadratic function.

(b) (6 points) Consider the norm ‖ · ‖ defined by

‖x‖ = 2‖x‖2.

Express the steepest descent direction ∆xsd and the normalized steepest descent direction
∆xnsd explicitly in terms of the gradient ∇f(x).

Solution: This is a quadratic norm with matrix P = 4I. Then,

∆xnsd = −(∇f(x)TP−1∇f(x))−1/2P−1∇f(x)

= −(∇f(x)T∇f(x))−1/2P−1/2∇f(x)

= − ∇f(x)

2‖∇f(x)‖2
and

∆xsd = −P−1∇f(x) = −1

4
∇f(x).

Alternatively, the definitions can be used directly. We have

∆xnsd = argmin{∇f(x)Tv : ‖v‖ ≤ 1}
= argmin{∇f(x)Tv : 2‖v‖2 ≤ 1}

=
1

2
argmin{∇f(x)Tv : ‖v‖2 ≤ 1}

= − ∇f(x)

2‖∇f(x)‖2
,

and since

‖∇f(x)‖∗ = sup{∇f(x)Tx : ‖x‖ ≤ 1}
= sup{∇f(x)Tx : 2‖x‖2 ≤ 1}

= sup{1

2
∇f(x)Tx : ‖x‖2 ≤ 1}

=
1

2
‖∇f(x)‖2
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we get

∆xsd = ‖f(x)‖∗∆xnsd = −1

4
∇f(x).

(c) (6 points) Explain whether or not steepest descent using the above norm is the same as gradient
descent when exact line search is used. And what about when backtracking line search is used?

Solution: Since the descent direction for the steepest descent method with norm ‖.‖ is a
positive multiple of the gradient descent direction, both methods are exactly the same when
exact line search is used. With backtracking line search the two methods can be different
(backtracking line search starts at a certain multiple of the descent direction and tracks
backwards. If the descent direction had a different magnitude this can be different).

(d) (6 points) Suppose n = 2 and f(x) = x21 + x22 − cos(x1). Find the gradient, Hessian, and
Newton step ∆xnt at the point (0, 1).

Solution: The gradient is

∇f(x) =

(
2x1 + sin(x1)

2x2

)
The Hessian is

∇2f(x) =

(
2 + cos(x1) 0

0 2

)
The Newton direction is

∆xnt = −(∇2f(0, 1))−1∇f(0, 1) = −
(

1/3 0
0 1/2

)(
0
2

)
=

(
0
−1

)
.
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3. Consider the 1-dimensional optimization problem

minimize (x− 2)2

subject to 0 ≤ x ≤ 5.

(a) (6 points) Explain why the objective function is unimodal (according to the definition of uni-
modal we used in the lecture).

Solution: It is strictly decreasing for x < 2 and strictly increasing for x > 2.

(b) (6 points) Suppose we apply Fibonacci line search with initial bracket [0, 5]. What is the bracket
after 4 function evaluations? Make a sketch to support your answer.

Solution: (skip) The final bracket is something like [1, 2.000001] or [1.999999, 3]

(c) (3 points) How many iterations does quadratic fit search need to find the minimum? Explain
your answer.

Solution: Only 1 since the function is quadratic itself. (The answer 2 is also correct, to
detect a minimizer has been found.)

(d) (9 points) Find the Lagrangian, Lagrange dual function, and Lagrange dual problem.

Solution: The Lagrangian is

L(x, λ) = (x− 2)2 − λ1x+ λ2(x− 5) = x2 + (λ2 − 4− λ1)x− 5λ2 + 4.

We have
∂

∂x
L(x, λ) = 2x+ λ2 − 4− λ1.

So the infimum over x is attained for x = (λ1 + 4− λ2)/2. The dual function is

g(λ) = inf
x
L(x, λ) = (λ1 + 4− λ2)2/4− (λ1 + 4− λ2)2/2− 5λ2 + 4

= 4− 5λ2 − (λ1 + 4− λ2)2/4

So the dual problem is

maximize 4− 5λ2 − (λ1 + 4− λ2)2/4
subject to λ ≥ 0.
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4. Let (x1, y1), . . . , (xN , yN ) ∈ Rn × {−1, 1} be a training set and γ > 0 a parameter. Consider the
support vector problem

minimize
1

2
‖a‖22 + γ1Tu

subject to yi(a
Txi + b) ≥ 1− ui for i = 1, . . . , N,

u ≥ 0

with optimal solution (a∗, b∗, u∗).

(a) (3 points) Does strong duality hold? Explain why or why not.

Solution: Yes, the problem is convex and the solution (a, b, u) with a = 0, b = 0, and
ui = 2 for all i, is strictly feasible, so strong duality holds by Slater’s condition. (In fact,
since the constraints are affine and the domain is everything, any feasible solution is strictly
feasible.)

(b) (3 points) How do we use the solution (a∗, b∗, u∗) to decide to which class (+1 or −1) a new
point z ∈ Rn belongs?

Solution: If (a∗)Txi + b∗ > 0 we assign it to class +1, and otherwise to class −1.

(c) (6 points) Explain why we have the terms 1
2‖a‖

2
2 and γ1Tu in the objective. What are these

terms achieving in relation to the hyperplane and slab around the hyperplane defined by a and
b? What happens when the parameter γ is very large?

Solution: We can think of a and b defining a hyperplane {x : aTx = b} with a slab around
it of width 2/‖a‖2. The term 1

2‖a‖
2
2 means we are trying to find a hyperplane with a wide

slab around it, and the term γ1Tu penalizes a point lying in the slab or on the wrong side
of the slab. When γ is very large (almost) no point will lie in the slab or on the wrong side
of the slab; that is, when γ is very large we are trying to find a hyperplane that separates
the two point sets with an as wide as possible slab around it containing no points.

(d) (6 points) Suppose that for a given i and given dual optimal solution, the dual variables corre-
sponding to the constraints yi(aTxi +b) ≥ 1−ui and ui ≥ 0 are both nonzero. What does this
say about xi in relation to the hyperplane and slab around the hyperplane defined by (a∗, b∗)?

Solution: If these dual variables are nonzero, then by complementary slackness (note that
strong duality holds) yi(aTxi + b) = 1 − ui and ui = 0. This means the point xi lies on
the boundary of the slab.

End of test


