Answers Exam Continuous Time Finance

Code : 151530

- Date : 9 november 2005
 - 1. Let C(t, S) denote the Black-Scholes call option formula and $\Delta(t, S)$ the corresponding delta. We know that the call-option can be replicated using stock and bond by investing $\Delta(t, S_t)$ in stocks, i.e. a percentage $u_t^S = S_t \Delta(t, S_t)/C(t, S_t)$ so

$$\frac{dC(t,S_t)}{C(t,S_t)} = u_t^S \frac{dS_t}{S_t} + (1-u_t^S) \frac{dB_t}{B_t}$$

Rewriting gives

$$\frac{dS_t}{S_t} = \frac{C(t,S_t)}{S_t\Delta(t,S_t)} \frac{dC(t,S_t)}{C(t,S_t)} + (1 - \frac{C(t,S_t)}{S_t\Delta(t,S_t)}) \frac{dB_t}{B_t}$$

so the self-financing strategy is given by

$$dS_t = \frac{1}{\Delta(t, S_t)} dC(t, S_t) + \frac{S_t - C(t, S_t) / \Delta(t, S_t)}{B_t} dB_t$$
$$S_t = \frac{1}{\Delta(t, S_t)} C(t, S_t) + \frac{S_t - C(t, S_t) / \Delta(t, S_t)}{B_t} B_t$$

- 2. a. Use the fact that $\{\omega: M_t(\omega) \le a\} = \{\omega: M_t(\omega) \le a \& W_t(\omega) \le a\}.$
 - b. The pricd P equals

$$P = e^{-rT} \mathbb{E}^{\mathbb{Q}}[\mathbf{1}_{\{\max_{u \in [0,T]} S_u \ge L\}} | \mathcal{F}_0] = e^{-rT} \mathbb{E}^{\mathbb{Q}}[\mathbf{1}_{\{\max_{u \in [0,T]} W_u \ge \ln(L/S_0)/\sigma\}}]$$

= $e^{-rT} \mathbb{Q}[\max_{u \in [0,T]} W_u \ge \ln(L/S_0)/\sigma] = 2e^{-rT} N(\frac{\ln(S_0/L)}{\sigma\sqrt{T}})$

- c. When $\sigma \to \infty$ we have that P goes to e^{-rT} since infinite volatility means that the probability that the level L will be hit goes to one, so we receive a sure payoff of 1 at T in the limit.
- d. Take 1000 times the Δ i.e. $1000\frac{\partial P}{\partial S_0}$ in the expression above.
- 3. a. See Björk for Martingale Representation Theorem.
 - b. If V is tradeable then there exist h^S and h^B processes such that

$$dV = h^S dS + h^B dB$$
$$V = h^S S + h^B B$$

Since S/B is a \mathbb{Q} -martingale, there exists a process ζ such that $d\frac{S}{B} = \zeta dW$ where W is Brownian Motion under \mathbb{Q} . but then using Ito,

$$d\frac{V}{B} = \frac{h^S}{B}dS + (\frac{h^B}{B} - \frac{V}{B^2})dB = \frac{h^S}{B}dS - \frac{h^SS}{B^2}dB$$
$$d\frac{S}{B} = \frac{1}{B}dS - \frac{S}{B^2}dB$$

so $d\frac{V}{B} = h^S d\frac{S}{B} = h^S \zeta dW$. which shows that V/B is a martingale under \mathbb{Q} .

- c. Ito shows that $d\frac{M}{B} = \frac{\phi}{B}dm$ so since M/B is a martingale under \mathbb{Q} , the same must be true for m by Martingale Representation.
- d. We have by c.

$$m_t = \mathbb{E}^{\mathbb{Q}}[M_T \mid \mathcal{F}_t] = \mathbb{E}^{\mathbb{Q}}[G_T \mid \mathcal{F}_t]$$

e. The price is

$$m_{0} = \mathbb{E}^{\mathbb{Q}}[C(t_{1}, S_{t_{1}}) | \mathcal{F}_{0}] = \mathbb{E}^{\mathbb{Q}}\left[\mathbb{E}^{\mathbb{Q}}[e^{-r(T-t_{1})}(S_{T}-K)^{+} | \mathcal{F}_{t_{1}}] | \mathcal{F}_{0}\right]$$
$$= e^{rt_{1}}\mathbb{E}^{\mathbb{Q}}[e^{-rT}(S_{T}-K)^{+} | \mathcal{F}_{0}] = e^{rt_{1}}C(0, S_{0})$$

where C(t, S) is the Black-Scholes call formula for maturity T and strike K.

4. a. The description of the model implies that

$$S_t - De^{-r(t_D - t)} \mathbf{1}_{\{t \le t_D\}} = ae^{\sigma W_t + (r - \frac{1}{2}\sigma^2)t}$$

1

but inserting t = 0 gives

$$S_0 - De^{-rt_D} = a$$

and substituting this gives

$$S_t = (S_0 - De^{-rt_D})e^{\sigma W_t + (r - \frac{1}{2}\sigma^2)t} + De^{-r(t_D - t)}\mathbf{1}_{\{t \le t_D\}}$$

b. The price is

$$P = e^{-rT} \mathbb{E}^{\mathbb{Q}}[(S_T - K)^+ \mid \mathcal{F}_0]$$

but sibstituing the expression above then gives

$$P = e^{-rT} \mathbb{E}^{\mathbb{Q}} [((S_0 - De^{-rt_D})e^{\sigma W_T + (r - \frac{1}{2}\sigma^2)T} - K)^+ | \mathcal{F}_0]$$

but we recognize this: if C(t, S) is the ordinary Black-Scholes call formula for maturity T and strike K then this equals $C(0, S_0 - De^{-rt_D})$.

Grading:

1		:	4	2	a	:	2	3	a	:	3	free	: 4	4
					b	:	4		b	:	4			
4	a	:	3		с	:	2		с	:	3			
	b	:	2		d	:	2		d	:	3			
									e	:	4			

Total: 40 points