## Answers Exam Continuous Time Finance

Code : 151530
Date : 9 november 2005

1. Let $C(t, S)$ denote the Black-Scholes call option formula and $\Delta(t, S)$ the corresponding delta. We know that the call-option can be replicated using stock and bond by investing $\Delta\left(t, S_{t}\right)$ in stocks, i.e. a percentage $u_{t}^{S}=S_{t} \Delta\left(t, S_{t}\right) / C\left(t, S_{t}\right)$ so

$$
\frac{d C\left(t, S_{t}\right)}{C\left(t, S_{t}\right)}=u_{t}^{S} \frac{d S_{t}}{S_{t}}+\left(1-u_{t}^{S}\right) \frac{d B_{t}}{B_{t}}
$$

Rewriting gives

$$
\frac{d S_{t}}{S_{t}}=\frac{C\left(t, S_{t}\right)}{S_{t} \Delta\left(t, S_{t}\right)} \frac{d C\left(t, S_{t}\right)}{C\left(t, S_{t}\right)}+\left(1-\frac{C\left(t, S_{t}\right)}{S_{t} \Delta\left(t, S_{t}\right)}\right) \frac{d B_{t}}{B_{t}}
$$

so the self-financing strategy is given by

$$
\begin{aligned}
d S_{t} & =\frac{1}{\Delta\left(t, S_{t}\right)} d C\left(t, S_{t}\right)+\frac{S_{t}-C\left(t, S_{t}\right) / \Delta\left(t, S_{t}\right)}{B_{t}} d B_{t} \\
S_{t} & =\frac{1}{\Delta\left(t, S_{t}\right)} C\left(t, S_{t}\right)+\frac{S_{t}-C\left(t, S_{t}\right) / \Delta\left(t, S_{t}\right)}{B_{t}} B_{t}
\end{aligned}
$$

2. a. Use the fact that $\left\{\omega: M_{t}(\omega) \leq a\right\}=\left\{\omega: M_{t}(\omega) \leq a \& W_{t}(\omega) \leq a\right\}$.
b. The pricd $P$ equals

$$
\begin{aligned}
P & =e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\mathbf{1}_{\left\{\max _{u \in[0, T]} S_{u} \geq L\right\}} \mid \mathcal{F}_{0}\right]=e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\mathbf{1}_{\left\{\max _{u \in[0, T]} W_{u} \geq \ln \left(L / S_{0}\right) / \sigma\right\}}\right] \\
& =e^{-r T} \mathbb{Q}\left[\max _{u \in[0, T]} W_{u} \geq \ln \left(L / S_{0}\right) / \sigma\right]=2 e^{-r T} N\left(\frac{\ln \left(S_{0} / L\right)}{\sigma \sqrt{T}}\right)
\end{aligned}
$$

c. When $\sigma \rightarrow \infty$ we have that $P$ goes to $e^{-r T}$ since infinite volatility means that the probability that the level $L$ will be hit goes to one, so we receive a sure payoff of 1 at $T$ in the limit.
d. Take 1000 times the $\Delta$ i.e. $1000 \frac{\partial P}{\partial S_{0}}$ in the expression above.
3. a. See Björk for Martingale Representation Theorem.
b. If $V$ is tradeable then there exist $h^{S}$ and $h^{B}$ processes such that

$$
\begin{aligned}
d V & =h^{S} d S+h^{B} d B \\
V & =h^{S} S+h^{B} B
\end{aligned}
$$

Since $S / B$ is a $\mathbb{Q}$-martingale, there exists a process $\zeta$ such that $d \frac{S}{B}=\zeta d W$ where $W$ is Brownian Motion under $\mathbb{Q}$. but then using Ito,

$$
\begin{aligned}
d \frac{V}{B} & =\frac{h^{S}}{B} d S+\left(\frac{h^{B}}{B}-\frac{V}{B^{2}}\right) d B=\frac{h^{S}}{B} d S-\frac{h^{S} S}{B^{2}} d B \\
d \frac{S}{B} & =\frac{1}{B} d S-\frac{S}{B^{2}} d B
\end{aligned}
$$

so $d \frac{V}{B}=h^{S} d \frac{S}{B}=h^{S} \zeta d W$. which shows that $V / B$ is a martingale under $\mathbb{Q}$.
c. Ito shows that $d \frac{M}{B}=\frac{\phi}{B} d m$ so since $M / B$ is a martingale under $\mathbb{Q}$, the same must be true for $m$ by Martingale Representation.
d. We have by c.

$$
m_{t}=\mathbb{E}^{\mathbb{Q}}\left[M_{T} \mid \mathcal{F}_{t}\right]=\mathbb{E}^{\mathbb{Q}}\left[G_{T} \mid \mathcal{F}_{t}\right]
$$

e. The price is

$$
\begin{aligned}
m_{0} & =\mathbb{E}^{\mathbb{Q}}\left[C\left(t_{1}, S_{t_{1}}\right) \mid \mathcal{F}_{0}\right]=\mathbb{E}^{\mathbb{Q}}\left[\mathbb{E}^{\mathbb{Q}}\left[e^{-r\left(T-t_{1}\right)}\left(S_{T}-K\right)^{+} \mid \mathcal{F}_{t_{1}}\right] \mid \mathcal{F}_{0}\right] \\
& =e^{r t_{1}} \mathbb{E}^{\mathbb{Q}}\left[e^{-r T}\left(S_{T}-K\right)^{+} \mid \mathcal{F}_{0}\right]=e^{r t_{1}} C\left(0, S_{0}\right)
\end{aligned}
$$

where $C(t, S)$ is the Black-Scholes call formula for maturity $T$ and strike $K$.
4. a. The description of the model implies that

$$
S_{t}-D e^{-r\left(t_{D}-t\right)} \mathbf{1}_{\left\{t \leq t_{D}\right\}}=a e^{\sigma W_{t}+\left(r-\frac{1}{2} \sigma^{2}\right) t}
$$

but inserting $t=0$ gives

$$
S_{0}-D e^{-r t_{D}}=a
$$

and substituting this gives

$$
S_{t}=\left(S_{0}-D e^{-r t_{D}}\right) e^{\sigma W_{t}+\left(r-\frac{1}{2} \sigma^{2}\right) t}+D e^{-r\left(t_{D}-t\right)} \mathbf{1}_{\left\{t \leq t_{D}\right\}}
$$

b. The price is

$$
P=e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\left(S_{T}-K\right)^{+} \mid \mathcal{F}_{0}\right]
$$

but sibstiuting the expression above then gives

$$
P=e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\left.\left(\left(S_{0}-D e^{-r t_{D}}\right) e^{\sigma W_{T}+\left(r-\frac{1}{2} \sigma^{2}\right) T}-K\right)^{+} \right\rvert\, \mathcal{F}_{0}\right]
$$

but we recognize this: if $C(t, S)$ is the ordinary Black-Scholes call formula for maturity $T$ and strike $K$ then this equals $C\left(0, S_{0}-D e^{-r t_{D}}\right)$.

## Grading:

| 1 |  | $:$ | 4 | 2 | a | $:$ | 2 | 3 | a | $:$ | 3 | free | $:$ | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  | b | $:$ | 4 |  | b | $:$ | 4 |  |  |  |
| 4 | a | $:$ | 3 |  | c | $:$ | 2 |  | c | $:$ | 3 |  |  |  |
|  | b | $:$ | 2 |  | d | $:$ | 2 |  | d | $:$ | 3 |  |  |  |
|  |  |  |  |  |  |  |  | e | $:$ | 4 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Total: 40 points

