Exam Continuous Time Finance

Code : 151530

Date : 9 november 2005

All answers must be motivated. Lots of success !

1. Consider a standard Black-Scholes model where

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$
$$\frac{dB_t}{B_t} = rdt$$

with $\{W_t, t \ge 0\}$ a standard Brownian Motion process under \mathbb{P} , and $\mu > r$ and $\sigma > 0$ known constants. Let $(\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by the Brownian Motion, and denote the equivalent martingale measure for this market by \mathbb{Q} . Assume that you want to replicate one stock S using call options (which all have the same maturity T and strike K) and the bankacount B. Give the correct self-financing replication strategy.

2. Remember that a standard Brownian Motion process W_t and its corresponding running maximum

$$M_t = \max_{u \in [0,t]} W_u$$

have the joint distribution function

$$\mathbb{P}(W_t \le a, M_t \le b) = N(\frac{a}{\sqrt{t}}) - N(\frac{a-2b}{\sqrt{t}})$$
(1)

but this is valid only for values where $b \ge 0$ and $a \le b$. Consider the standard Black-Scholes model of the previous question. We want to determine the price, at time t = 0, of a contingent claims which pays at the time of maturity T

- 1, if at any time $u \in [0, T]$ the stock price S_u is larger than or equal to L, and pays
- zero otherwise.

You may assume that $0 < S_0 < L$, that T > 0 and that

$$r = \frac{1}{2}\sigma^2$$

which should simplify your calculations considerably.

a. Prove in detail why (1) implies that for all $a \ge 0$

$$\mathbb{P}(M_t \le a) = 2N(\frac{a}{\sqrt{t}}) - 1$$

- b. Determine an explicit formula for the price of the contingent claim given above in terms of the given parameters.
- c. Explain what the correct limit should be for the price in b. when $\sigma \to \infty$ and when $S_0 = L$, and use this to check your formula.
- d. Find an expression for the amount of stocks you should buy today (i.e. at time zero) if you want to hedge 1000 contracts of this claim.

- 3. Remember that we say that m is the futures price process for delivery of an asset G at time T if and only if
 - $m_T = G_T$ and
 - for all adapted left-continuous trading stratgies ϕ_t the following process M is a tradeable:

$$dM_t = M_t \frac{dB_t}{B_t} + \phi_t dm_t$$
$$M_0 = 0$$

We now take the Black-Scholes market of the first question. By definition, the martingale measure \mathbb{Q} makes the discounted asset price process S_t/B_t a martingale. Remember that we call an asset a tradeable in this market if it can be replicated self-financingly using S and B.

- a. State the Martingale Representation Theorem.
- b. Prove: if an asset V is a tradeable, then its discounted asset price process V_t/B_t is a martingale under \mathbb{Q} .
- c. Use this to prove that m is a martingale under \mathbb{Q} .
- d. Prove that

$$m_t = \mathbb{E}^{\mathbb{Q}}[G_T \mid \mathcal{F}_t]$$

- e. Let C be a call option on S with maturity T and strike K. Let F_0 be the futures price today (t = 0) for delivery of the call C at a time $t_1 \in]0, T[$. Derive an explicit formula for F_0 .
- 4. Take again the Black-Scholes model formulated in the first question. We want to price a call option C on the asset S (with strike K and maturity T) but we now assume that the asset S will pay a single cash dividend with a value of D at time $t_D \in]0, T[$. The Escrowed Dividend Model assumes that the asset price minus the present value of all dividends to be paid until the maturity of the option follows a Geometric Brownian Motion under \mathbb{Q} of the form

$$ae^{\sigma W_t + (r - \frac{1}{2}\sigma^2)t}$$

where a > 0 is a constant.

a. Show that this implies that

$$S_t = (S_0 - De^{-rt_D})e^{\sigma W_t + (r - \frac{1}{2}\sigma^2)t} + De^{-r(t_D - t)}\mathbf{1}_{\{t \le t_D\}}$$

b. Let F(S, t) be the standard Black-Scholes European call option formula for strike K and time to maturity T if the current time is t and the current stock price is S. Give a formula for the price at t = 0 of the call C defined above, in terms of F.

Grading:

1		:	4	2	a	:	2	3	a	:	3	free	:	4
					b	:	4		\mathbf{b}	:	4			
4	\mathbf{a}	:	3		с	:	2		\mathbf{c}	:	3			
	\mathbf{b}	:	2		d	:	2		d	:	3			
									e	:	4			

Total: 40 points