Exam MSc Course Game Theory (191521800) February 7, 2014; University of Twente

Motivate all your answers.

1. (6 points) Consider the bimatrix game given by

$$(A,B) = \left(\begin{array}{cc} 4,4 & 1,5\\ 5,1 & 0,0 \end{array}\right)$$

- (a) Compute all Nash equilibria of this game.
- (b) Briefly describe in your words, what is the difference between Nash and Correlated equilibria?
- (c) Write down all conditions that define the correlated equilibria of this game, and give an example of a correlated equilibrium of this game that is not a Nash equilibrium.
- 2. (6 points) Consider the following two player extensive form game.

Figure 1: Extensive form game.

- (a) Give the corresponding 3×2 bimatrix game.
- (b) Compute all Nash equilibria of this 3×2 bimatrix game, and also give the corresponding behavioral strategy.
- (c) Compute the subgame perfect equilibria for this game, and briefly discuss the outcome.
- 3. (8 points) Consider the cooperative game (N, v) with $N = \{1, 2, 3\}$ and $v = 2u_{\{1,2\}} + 6u_{\{1,3\}}$.
 - (a) Which players are null players, if any?
 - (b) Show that the core of this game is

 $C(v) = \left\{ x \in \mathbb{R}^3 \, | \, x_1 + x_2 + x_3 = 8, \ 0 \le x_2 \le 2, 0 \le x_3 \le 6 \right\}.$

- (c) Calculate the nucleolus of this game.
- (d) Does the nucleolus belong to the Weber set?

- 4. (4 points) Let (N, v) be an essential game. (That is, $v(N) \ge \sum_{i=1}^{n} v(i)$.) Prove that the imputation set is the convex hull of the points \mathbf{f}^1 , \mathbf{f}^2 , ... \mathbf{f}^n , where $\mathbf{f}^i_k = v(k)$ if $k \neq i$, and $\mathbf{f}^i_k = v(N) \sum_{k \in N \setminus \{i\}} v(k)$ if k = i.
- 5. (6 points) Consider the following discounted stochastic game with infinite horizon and discount factor $\beta = \frac{1}{2}$:

3	0	1000	
(1	,0)	(0,1)	0
0	2		(0,1)
(0	, 1)	(1,0)	state 2
	state	1	

- (a) Write down the set of equations that uniquely determine the value vector of the game.
- (b) Determine the value of this game, and optimal strategies for the players.

6. (6 points)

- (a) Mention two (nontrivial) differences between stochastic games with discounted rewards and stochastic games with average rewards (both with infinite horizon).
- (b) Consider a zero-sum β -discounted stochastic game Γ_{β} . Prove that the following two statements are equivalent:
 - (i) (π_*^1, π_*^2) is an equilibrium point in Γ_β .
 - (ii) π^1_* is optimal for player 1, π^2_* is optimal for player 2, and $\mathbf{v}_\beta(\pi^1_*, \pi^2_*) = \mathbf{v}_\beta$.

Total: 36 + 4 = 40 points