Exam Markov Decision Theory and Algorithmic Methods (191531920)

April 13, 2015 3 hrs

This exam consists of 4 exercises. Motivate all your answers.

- 1. Consider an infinite horizon average reward Markov Decision Problem (MDP) with state space $S = \{s_1, s_2\}$, and action sets $A_{s_1} = \{a_{1,1}, a_{1,2}\}$, $A_{s_2} = \{a_{2,1}, a_{2,2}\}$. The immediate rewards are $r(s_1, a_{1,1}) = 4$, $r(s_1, a_{1,2}) = 6$, $r(s_2, a_{2,1}) = -4$, $r(s_2, a_{2,2}) = -6$. The transition probabilities are given by $p(s_2|s_1, a_{1,1}) = 1/2$, $p(s_2|s_1, a_{1,2}) = 1$, $p(s_2|s_2, a_{2,1}) = 1/2$, and $p(s_2|s_2, a_{2,2}) = 0$.
 - (a) The stationary policy d^{∞} is defined by the decision rule d satisfying $d(s_1) = a_{1,2}$ and $d(s_2) = a_{2,2}$. Calculate the gain $g^{d^{\infty}}$ of this stationary policy.
 - (b) The optimality equations in vector notation are given by B(g,h) = 0 with

$$B(g,h)(s) = \max_{a \in A_s} \left\{ r(s,a) - g + \sum_{j \in S} p(j|s,a)h(j) - h(s) \right\}.$$

Write down the optimality equations for this MDP. Use these equations and their properties to show that the optimal gain g^* is bounded, namely $-4 \le g^*(s) \le 6$.

- (c) Show that $g^*(s) = 2/3$, $s \in S$, is the optimal gain.
- (d) Let h = (10/3, -10/3) be a bias vector. Determine a decision rule d that is h-improving.
- (e) Suppose that you are asked to check whether or not a given policy π is average optimal. Mention two different ways to do so.
- 2. (a) Consider an infinite horizon discounted MDP. Explain in words why we may restrict attention to Markov policies, instead of history-dependent policies, when analyzing discounted MDPs.
 - (b) One algorithm for solving infinite horizon discounted MDPs is the value iteration algorithm. This results in a stationary policy $(d_{\varepsilon})^{\infty}$ with

$$d_{\varepsilon}(s) \in \arg\max_{a \in A_s} \left\{ r(s,a) + \sum_{j \in S} \lambda p(j|s,a) v^{n+1}(j) \right\}$$

for each state $s \in S$. Prove that the policy $(d_{\varepsilon})^{\infty}$ is ε -optimal.

- 3. Consider large-scale MDPs with countable state space $S = \{0, 1, \ldots\}$, discount factor λ , and unbounded rewards.
 - (a) In this setting, the weighted supremum norm with respect to w is used: $||v||_w = \sup_{s \in S} w(s)^{-1} |v(s)|$ with w an arbitrary positive real-valued function on S satisfying $\inf_{s \in S} w(s) > 0$.

Let $A_s = \{0, 1, 2, ..., M\}$ for all states s, r(s, a) = s, and p(j|s, a) = 1 if j = s + aand p(j|s, a) = 0 else. Let $w(s) = \max(s, 1)$. Show that there exists a constant κ , $0 \le \kappa < \infty$, such that

$$\sum_{j \in S} p(j|s, a) w(j) \le \kappa w(s), \quad \text{ for all } a \in A_s, \text{ for all } s \in S.$$

(This is one of the conditions for existence of an optimal policy.)

- (b) Under suitable conditions (one of them is mentioned in part (a)), the optimality equation has an optimal solution; that is, the MDP has a value. Why do algorithms like the value iteration algorithm not work in this case? And, how can we approximate the value in practice?
- 4. Approximate dynamic programming (adp) is a recent technique, useful for solving largescale MDPs.
 - (a) Describe and explain the basic adp algorithm.
 - (b) Describe and explain the *Q*-learning algorithm. What is the advantage of using this algorithm? How is it related to exploration?

Points:

	1					2		3		4		Total
	a	b	с	d	е	a	b	a	b	a	b	
ĺ	2	3	4	4	2	2	4	4	4	3	4	+4 = 40