Exam Markov Decision Theory and Algorithmic Methods (191531920)

January 22, 2016 8:45-11:45h

This exam consists of 4 exercises. Motivate all your answers.

- 1. Consider an infinite horizon discounted reward Markov Decision Problem (MDP) with state space $S = \{s_1, s_2\}$, and action sets $A_{s_1} = \{a, b\}$, $A_{s_2} = \{c\}$. The immediate rewards are $r(s_1, a) = 2$, $r(s_1, b) = 6$, $r(s_2, c) = -1$. The transition probabilities are given by $p(s_2|s_1, a) = 1/3$, $p(s_2|s_1, b) = 1$, and $p(s_2|s_2, c) = 1$. The discount factor is $\lambda = 0.90$.
 - (a) Use the optimality equations to calculate the discount optimal policy, and the value of this MDP.
 - (b) Is the following statement true or false? "The value iteration algorithm may result in an optimal policy."
 - (c) Consider the policy iteration algorithm. Let v^n and v^{n+1} be successive values generated by this algorithm. Prove that $v^{n+1} \ge v^n$.
- 2. The following questions are about small-scale MDPs.
 - (a) In an MPD, explain how a policy $\pi \in \Pi^{HR}$ and an initial state s_1 induce a stochastic process of states and actions $(X_1, Y_1, X_2, Y_2, \ldots)$, with X_t the random state and Y_t the random action at time t.
 - (b) Consider a finite-horizon MDP. Under which conditions does there exist an optimal deterministic Markovian policy?
 - (c) Consider an infinite-horizon average-reward MDP. Using the value iteration algorithm with $\varepsilon > 0$ results in successive values v^n and v^{n+1} . Assume the stop criterion holds. Give two good approximations of the optimal gain g^* .
- 3. Consider large-scale MDPs with countable state space $S = \{0, 1, ...\}$, discount factor λ , and unbounded rewards.
 - (a) Let $A_s = \{0, 1, 2, ..., M\}$ for all states $s \in S$, r(s, a) = s, and p(j|s, a) = 1 if j = s + a and p(j|s, a) = 0 else, for all $a \in A_s$, $s \in S$. Let $w(s) = \max(s, 1)$, $s \in S$. Show that there exists a constant κ , $0 \le \kappa < \infty$, such that

 $\sum_{j \in S} p(j|s, a) w(j) \le \kappa w(s), \quad \text{ for all } a \in A_s, \text{ and all } s \in S.$

- (b) Under suitable conditions (one of them is mentioned in part (a)), the optimality equations have an optimal solution; that is, the MDP has a value. Why does the value iteration algorithm not work in this case?
- (c) Explain the method of finite-state approximations. What is the main result of this method?
- 4. Approximate dynamic programming (ADP) is a recent technique, useful for solving large-scale MDPs.
 - (a) Describe and explain the three curses of dimensionality as observed in standard dynamic programming techniques.
 - (b) Describe and explain the basic ADP algorithm. How does it address the curses of dimensionality? Mention an advantage and a disadvantage of this algorithm.

Points:

1			2			3			4		Total	
a	b	c	a	b	C	a	b	c	a	b	• • • •	1
5	3	4	3	3	3	3	2	3	3	4	+4 = 40	