Exam Markov Decision Theory and Algorithmic Methods (191531920)

April 11, 2016 8:45-11:45 hrs

This exam consists of 4 exercises. Motivate all your answers.

- 1. Consider the following infinite-horizon Markov Decision Problem (MDP) with the average reward criterion. Decisions are taken at times 1, 2, 3, There are two states, $S = \{s_1, s_2\}$, with actions $a_{1,1}$ and $a_{1,2}$ in state s_1 , and action $a_{2,1}$ in state s_2 . Further, $r(s_1, a_{1,1}) = 3$, $r(s_1, a_{1,2}) = 4$, $r(s_2, a_{2,1}) = 5$, and $p(s_1|s_1, a_{1,1}) = 0$, $p(s_1|s_1, a_{1,2}) = 1/2$, $p(s_1|s_2, a_{2,1}) = 3/4$, $p(s_2|s, a) = 1 p(s_1|s, a)$.
 - (a) Use the optimality equations to determine an average optimal policy, and the value of this MDP.
 - (b) Why does there exist a stationary average optimal policy?
 - (c) Let $\varepsilon > 0$. Is it possible that the value iteration algorithm results in an optimal policy, instead of an ε -optimal policy?
 - (d) Suppose g^* and h^* solve the optimality equations. Let d^* be h^* -improving. Prove that $(d^*)^{\infty}$ is an average optimal policy.
- 2. Consider the following infinite-horizon MDP with the discounted reward criterion, and discount factor $\lambda = 0.9$. Decisions are taken at times 0, 1, 2, There are two states, $S = \{s_1, s_2\}$, with actions $a_{1,1}$ and $a_{1,2}$ in state s_1 , and actions $a_{2,1}$ and $a_{2,2}$ in state s_2 . Further, $r(s_1, a_{1,1}) = 5$, $r(s_1, a_{1,2}) = 10$, $r(s_2, a_{2,1}) = -1$, $r(s_2, a_{2,2}) = -1$ and $p(s_1|s_1, a_{1,1}) = 1/2$, $p(s_1|s_1, a_{1,2}) = 0$, $p(s_1|s_2, a_{2,1}) = 0$, $p(s_1|s_2, a_{2,2}) = 1$. We solve this MDP with linear programming.
 - (a) Formulate the dual LP that corresponds to the given MDP.
 - (b) Why do we prefer to solve the dual LP over the primal LP?
 - (c) Give $\alpha(s_1) = 0.4$, the optimal solution of the dual LP is x^* with $x^*(s_1, a_{1,1}) = 0$, $x^*(s_1, a_{1,2}) = 4.95$, $x^*(s_2, a_{2,1}) = 0$, and $x^*(s_2, a_{2,2}) = 5.05$. Use this solution to construct an optimal policy of the given MDP.

- 3. Consider a large-scale MDP with the average reward criterion. Let $S = \{1, 2, 3, ...\}$, and $A_s = \{a_{s,1}, a_{s,2}\}$ for all $s \in S$. Further, $r(s, a_{s,1}) = 0$, $r(s, a_{s,2}) = 1 - 1/s$, and $p(s+1|s, a_{s,1}) = 1$, $p(s|s, a_{s,2}) = 1$, and all other transition probabilities are equal to 0.
 - (a) Consider the history dependent policy π^* which, for each state $s \in S$, uses action $a_{s,2} s$ times in state s, and then uses action $a_{s,1}$ once. Show that this policy, starting in state 1, generates the reward stream $(0, 0, 1/2, 1/2, 0, 2/3, 2/3, 2/3, 0, 3/4, \ldots)$.
 - (b) Determine $g_{-}^{\pi^*}$ and $g_{+}^{\pi^*}$ for the reward stream given in part (a).
 - (c) You are told that $g^* = 1$. Why does there not exist a deterministic stationary optimal policy in this MDP?
 - (d) Consider a general large-scale MDP with the average reward criterion, and finite A_s . Suppose the following assumptions hold.
 - For each $s \in S$, $-\infty < r(s, a) \le R < \infty$.
 - For each $s \in S$ and $0 \le \lambda < 1$, $v_{\lambda}^*(s) > -\infty$.
 - There exists a $K < \infty$ such that for each $s \in S$ $h_{\lambda}(s) \leq K$ for $0 \leq \lambda < 1$.
 - There exists a nonnegative function M(s) such that
 - i. $M(s) < \infty;$
 - ii. for each $s \in S$, $h_{\lambda}(s) \ge -M(s)$ for all $\lambda, 0 \le \lambda < 1$; and
 - iii. for each $s \in S$ and $a \in A_s$, $\sum_{j \in S} p(j|s, a)M(j) < \infty$.

What can you say about the gain q and bias h?

- 4. Approximate dynamic programming (adp) is a recent technique, useful for solving large-scale MDPs.
 - (a) Describe and explain the basic adp algorithm.
 - (b) What is the post-decision state? Mention an advantage and a disadvantage of using this state in adp.

Norm:

1				2			3				4		total
a	b	с	d	a	b	с	a	b	с	d	a	b	
4	2	3	4	3	2	3	2	2	2	3	4	2	+4 = 40

Exam grade: (Points obtained)/4