Exam Markov Decision Theory and Algorithmic Methods (191531920)

January 27, 2017 8:45-11:45 hrs

This exam consists of 4 exercises. You may bring your own 'cheat sheet' (1 page A4, one-sided). Motivate all your answers.

- 1. Consider the following infinite-horizon Markov decision problem (MDP) with the average reward criterion. There are two states, $S = \{s_1, s_2\}$, with actions a and b in state s_1 , and action c in state s_2 . The rewards are $r(s_1, a) = 2$, $r(s_1, b) = 3$, and $r(s_2, c) = -1$. The transition probabilities are given by $p(s_1|s_1, a) = 1/2$, $p(s_1|s_1, b) = 0$, and $p(s_1|s_2, c) = 1/2$.
 - (a) What are the optimality equations for this particular MDP in component notation?
 - (b) What is the dual LP corresponding to this MDP? (You do not need to solve this.)
 - (c) The optimal solution of the dual LP is $x^*(s_1, a) = 1/2$, $x^*(s_1, b) = 0$, and $x^*(s_2, c) = 1/2$. Use this to construct an average optimal policy.
 - (d) How can you use the policy iteration algorithm to check if the policy you found in part (c) is indeed optimal? (You do not have to run this algorithm.)
 - (e) Determine the gain g and bias h of this MDP.
- 2. Consider a finite horizon MDP with horizon 1. Prove that for any Markovian randomized policy in Π^{MR} there is a deterministic policy in Π^{MD} with a reward at least as great.
- 3. In the book of Puterman it is shown that under mild conditions there exists a value for discounted MDPs with infinite, countable state space. To approximate this value v_{λ}^{*} , the finite-state approximation method may be used.
 - (a) How can you derive the N-state approximation $v_*^{N,u}$?
 - (b) In which two cases does the *N*-state approximation $v_*^{N,u}$ converge to the value v_{λ}^* of the MDP?

Please turn over.

4. Consider a finite horizon Markov reward process with the discounted reward criterion. There is a single state, the horizon length is T = 30, and the discount factor is $\lambda = 0.95$. The expected discounted reward is

$$F^T = \mathbb{E} \sum_{t=0}^T \lambda^t R_t,$$

where \mathbb{E} denotes the expectation. The random variable R_t follows a normal distribution with mean 250 and variance 150, and is assumed to be independent of prior history. In this simple setting we use approximate dynamic programming to estimate F^T .

- (a) What is the exact value of F^T ?
- (b) Let $\hat{v}_t^n = \sum_{t'=t}^T \lambda^{t'-t} R_{t'}(\omega^n)$, where ω^n represents the *n*th sample path, and $R_{t'}^n = R_{t'}(\omega^n)$ is the realization of the random variable $R_{t'}$ for the *n*th sample path. Show that $\hat{v}_t^n = R_t^n + \lambda \hat{v}_{t+1}^n$. What is the meaning of \hat{v}_0^n ?
- (c) Formulate an adp algorithm to estimate F^T . In the value function updating equation use the stepsize $\alpha_{n-1} = 1/n$ for iteration n.
- (d) The stepsize is used for smoothing. What is the goal of smoothing, and why is it needed?

Points:

1	2	3	4	total	
16	4	6	10	+4 = 40	

Exam grade: (Points obtained)/4