Exam Markov Decision Theory and Algorithmic Methods (191531920)

26 January 2018 8:45-11:45h

This exam consists of 4 exercises.

Motivate all your answers.

You may bring your own 'cheat sheet' (1 page A4, one-sided).

- 1. Consider the following infinite-horizon Markov Decision Problem (MDP) with the discounted reward criterion, and discount factor $\lambda=0.8$. Decisions are taken at times 1, 2, 3, There are two states, $S=\{s_1,s_2\}$, with actions $a_{1,1}$ and $a_{1,2}$ in state s_1 , and action $a_{2,1}$ in state s_2 . Further, $r(s_1,a_{1,1})=4$, $r(s_1,a_{1,2})=3$, $r(s_2,a_{2,1})=1$, and $p(s_1|s_1,a_{1,1})=0$, $p(s_1|s_1,a_{1,2})=1/2$, $p(s_1|s_2,a_{2,1})=3/4$, $p(s_2|s,a)=1-p(s_1|s,a)$.
 - $\sqrt{(a)}$ Use the optimality equations to determine the discount optimal policy, and the optimal value of this MDP.
 - √(b) Why does there exist an optimal deterministic stationary policy?
 - $\sqrt{(c)}$ Let $\varepsilon > 0$. Is it possible that the value iteration algorithm results in an optimal policy, instead of an ε -optimal policy?
 - $\sqrt[4]{d}$ Let d^{∞} be a stationary policy, $d \in D^{MR}$. The policy evaluation equations are $v = r_d + \lambda P_d v$, with unique solution $v_{\lambda}^{d^*}$. Prove that this solution may be written as $v_{\lambda}^{d^*} = (I \lambda P_d)^{-1} r_d$.
- 2. Have another look at the MDP described in exercise 1 and make the following two changes. Firstly, the average reward criterion is used. Secondly, $p(s_1|s_2, a_{2,1}) = 0$. We solve this MDP with linear programming.
 - √(a) Formulate the dual LP that corresponds to the given MDP.
 - ✓(b) Which of the constraints is redundant?
 - \checkmark (c) The optimal solution of the dual LP is x^* with $x^*(s_1, a_{1,1}) = 0$, $x^*(s_1, a_{1,2}) = 0$, and $x^*(s_2, a_{2,1}) = 1$. Use this solution to construct an optimal policy of the given MDP. What is the optimal gain?

Please turn over

- 3. Consider a large-scale MDP with the average reward criterion. Let $S = \{1, 2, 3, ...\}$, and $A_s = \{a_{s,1}, a_{s,2}\}$ for all $s \in S$. Furthermore, $r(s, a_{s,1}) = 0$, $r(s, a_{s,2}) = 1 1/s$, $p(s+1|s, a_{s,1}) = 1$, $p(s|s, a_{s,2}) = 1$ and all other transition probabilities are equal to 0.
 - ✓ (a) Consider the history dependent policy π^* which, for each state $s \in S$, uses action $a_{s,2}$ s times in state s, and then uses action $a_{s,1}$ once. Show that this policy, starting in state 1, generates the reward stream $(0,0,1/2,1/2,0,2/3,2/3,2/3,0,3/4,\ldots)$.
 - \checkmark (b) Determine $g_{-}^{\pi^*}$ and $g_{+}^{\pi^*}$ for the reward stream given in part (a).
 - $\sqrt{(c)}$ You are told that $g^* = 1$. Why does there not exist a deterministic stationary optimal policy in this MDP?
- \checkmark (d) Consider a *general* large-scale MDP with the average reward criterion and finite A_s . Suppose the following assumptions hold.
 - For each $s \in S$, $-\infty < r(s, a) \le R < \infty$.
 - For each $s \in S$ and $0 \le \lambda < 1$, $v_{\lambda}^*(s) > -\infty$.
 - There exists a $K < \infty$ such that for each $s \in S$ $h_{\lambda}(s) \leq K$ for $0 \leq \lambda < 1$.
 - There exists a nonnegative function M(s) such that
 - i. $M(s) < \infty$;
 - ii. for each $s \in S$, $h_{\lambda}(s) \geq -M(s)$ for all λ , $0 \leq \lambda < 1$; and
 - iii. for each $s \in S$ and $a \in A_s$, $\sum_{j \in S} p(j|s, a)M(j) < \infty$.

What can you say about the gain g and bias h of this MDP?

- 4. Approximate dynamic programming (adp) is a recent technique that is useful for solving large-scale MDPs.
- $\sqrt{}$ (a) Describe and explain the basic adp algorithm.
- \checkmark (b) What are exploitation and exploration? What are their advantages and disadvantages?

Norm:

= (2.11				2			3				4		total
a	b	c	d	a	b	c	a	b	c	d	a	b	a adl mil
4	2	3	4	3	2	3	2	2	2	3	3	3	+4 = 40

Exam grade: Total/4