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1 Markov decision problems in general

1.1 Markov Decision Process basics

Whenever we consider a Markovian problem we want to find the optimal policy and whether it
has a particular form. Since certain problems are set up differently (small/large scale) we want to
find an algorithm that computes an optimal policy in the most efficient way.

The basic MDP model is always set up as follows:

• Decision epochs; T = 1, 2, . . . , N

• States; s ∈ S, discrete, do not change over time

• Actions; a ∈ As, discrete, do not change over time

• Action selection; a probability distribution q(·) with which an action a is selected

• Direct reward; rt(s, a), rN (s) is the salvage value

• Transition probabilities; pt(· | s, a) probability of transitioning from state s to state ·

The Markov Decision Process is then defined as {T, S,As, rt(s, a), pt(· | s, a)}.

For every MDP we have several decision rules which can occur, there are either deterministic (not
random) and randomized (random). These are

• Deterministic Markovian; we decide on picking an action from the action space

• Deterministic history dependent; we decide to pick an action dependent based on the history
of our MDP

• Randomized Markovian; same as MD, but the action is chosen with a certain probability
based on state

• Randomized history dependent; same as HD, but action is chosen with a probability based
on the history

It might occur that we will use a stationary policy, this means that we have a set of decisions which
do not change over time.

1.2 Induced stochastic process

Assume Xt, Yt, Zt to be the state action and history at time t respectively. Then the policy
π ∈ ΠHR and an initial state s1 induce a stochastic process Pπ = (X1, Y1, X2, Y2, . . .) as follows:

Pπ(X1 = s) =

{
1 if s = s1

0 otherwise

Pπ(Y1 = a | Zt = ht) = qdt(ht)(a)

Pπ(Xt+1 = s | Zt = (ht−1, at−1, st), Yt = at) = pt(s | st, at)

1.3 Induced discrete time Markov chain

We observe that Pπ(Xt+1 = s | Zt = (ht−1, at−1, st), Yt = at) depends on the history through

Xt = st and

Pπ(Yt = a | Zt = ht) = qdt(ht)(a)

However, for the Markovian policies we get that

Pπ(Yt = a | Zt = ht) = Pπ(Yt = a | Xt = st) = qdt(st)(a)

so we get that the process does not become dependent on the history anymore, which makes is a
Markov chain.
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2 Finite horizon Markov decision problems

In order to find the best reward sequence in an MDP we want to compare the expected total
rewards for different reward sequences. We can only compare two policy sequences when they are
comparable (outcome must be the same for each type of reward function). We express the expected
total reward as the utility Ψ, which is a real-valued function that represents the decision maker’s
preference for certain elements (in this case rewards). This is defined as

vπN (s) = Eπ
s

[
N−1∑
t=1

rt(Xt, Yt) + rN (XN )

]

We define an optimal policy as vπ
∗

N (s), for which holds that vπ
∗

N (s) > vπN (s). This means that the
value of an optimal policy is larger than the value for any other policy. These optimal policies do

not need to exist. We can also consider ϵ-optimal policies, for which holds that v
π∗
ϵ

N (s)+ ϵ > vπN (s).

2.1 Finite-horizon policy evaluation algorithms for fixed HD and HR

For fixed π ∈ ΠHD we can set up the following evaluation algorithm:

For fixed π ∈ ΠHR we can set up the following evaluation algorithm:

2.2 Optimality equations

The optimality equations give us the optimal returns and are a useful method to determine whether
a policy is optimal or not. They are defined as

ut (ht) = sup
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)ut+1 ((ht, a, j))


We can find the optimal policy by solving the optimality equations (system of linear equations).
This can be done for history dependent and Markovian decision rules. We know that there exists
an optimal deterministic Markovian policy if ∀st, t ∃a′ ∈ Ast , such that

a′ = arg sup
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1 ((ht, a, j))


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There exists a deterministic Markovian policy that is optimal if

• As is finite ∀s or

• As is compact, rt(s, a) continuous for each s, ∃M < ∞ such that |rt(s, a)| < M and pt(j|s, a)
continuous

2.3 Backward induction algorithm

This is one of the algorithms that is used to determine the optimal value for each time step over
the full time horizon.

1. Start at the end of the time horizon, so t = N

2. Determine the optimal value for all states sN

3. Set t := t− 1, and compute

u∗
t (st) = max

a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1(j)


4. Choose the action that provides the best action and use the value with that corresponding

action for the next computation

5. Stop when t = 1

3 Discounted reward Markov decision problems

Discounted MDPs arise when accounting for the time value of rewards. The expected total dis-
counted reward is defined as

vπλ(s) = Eπ
s

[ ∞∑
t=1

λt−1r (Xt, Yt)

]
We analyse discounted MDPs with Markov policies only, since the induced stochastic process for
a HR/HD policy can be rewritten in MR/MD form. To find the optimal policy we try to solve the
following set of linear equations:

vπλ = rd + λPdv
dπ′

λ

This is written in vector notation. Whenever we have a stationary policy, the value on the left-hand
side and on the right-hand side both become vd

∞

λ . The discount reward of a stationary policy is
the unique solution of a fixed point equation.

Technically, whenever we are dealing with a randomized Markovian policy, we try to find the
unique solution of

v = rd + λPdv where

vd
∞

λ (I − λPd)
−1rd

The optimality equations that one actually needs to solve are defined as

v(s) = sup
a∈As

r(s, a) +
∑
j∈S

λp(j | s, a)v(j)


The fact that the value of a discounted MDP satisfies the optimality equations can be proven using
the Banach fixed-point theorem.

A policy π∗ is optimal if and only if vπ
∗

λ solves the optimality equations. We can also set up several
conditions for an optimal deterministic policy to exist. These are (if we assume that S is discrete)
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• As is finite for each s ∈ S, or

• As is compact, r(s, a) continuous for each s and p(j|s, a) continuous, or

• As is compact, r(s, a) upper semicontinuous for each s and p(j|s, a) lower semicontinuous

Whenever optimal policies do not exist, we opt to consider ϵ-optimal policies π∗
ϵ for which must

hold v
π∗
ϵ

λ ≥ v∗λ − ϵe.

4 Algorithms for discounted reward Markov decision prob-
lems

There are three algorithms that are used to find optimal policies for finite discounted MDPs, namely
value iteration, policy iteration and linear programming. Value iteration only returns ϵ-optimal
policies, whereas policy iteation and linear programming return optimal policies.

4.1 Value iteration

The idea of this algorithm is that we are constantly solving optimality equations for each state.
We find action that provides us the largest value and use this in our further calculations. This way
we construct an ϵ-optimal policy.

4.2 Policy iteration

For the policy iteration we start with a certain initial policy, where compute a certain value. After,
we fix the value of the chosen policy and use it to determine a new policy. If the policy does not
need to change, we are done. Otherwise we fix the new policy and continue the process.
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4.3 Linear programming

In linear programming we set up a linear program for the MDP that we are dealing with. Ofttimes
it is difficult to compute the primal problem, hence it needs to be rewritten in a dual problem.
Usually the solution is provided for the discounted MDP.

5 Average reward Markov decision problems

We use average reward MDPs whenever we need to make frequent decisions or whenever the
discount value is very close to 1. Therefore, there are a bit less assumptions we need to make for
the average reward MDPs. Observe that we are making computations with the gain and the bias.
We define the average expected reward aka the gain of a history dependent randomized policy to
be

gπ(s) = lim
N→∞

1

N
Eπ

s

{
N∑
t=1

r (Xt, Yt)

}
= lim

N→∞

1

N
vπN+1(s)

If this limit does not exist, we consider the lim inf average reward or the lim sup average reward. If
there are equal, the gain exists. In order to see this, we must determine the direct reward sequence,
from this we compute the total reward sequence, and eventually the average reward sequence. We
will see to which value both limits converge, which allows us to draw conclusions regarding the gain
for a certain policy. In conclusion, a policy hence can be either average optimal, lim sup average
optimal or lim inf average optimal. The gain for HR policies equal the gain for MR policies.

5.1 Gain and bias for Markov Reward Process

Define the Cesaro limit to be P ∗ = limN→∞
1
N

∑N−1
n=0 Pn. Then the following properties hold:

• P ∗ = eqT with q being the stationary distribution of P

• PP ∗ = P ∗P = P ∗P ∗ = P ∗

Using the Cesaro limit, we can say the following about the gain for a stationary policy:

gd
∞
(s) = lim

N→∞

1

N
vd

∞

N+1(s) = P ∗
d rd(s)

An MDP with a stationary policy generates an MRP with a transition matrix Pd and reward rd.
The gain is a constant function if our Markov chain is irreducible or has a single recurrent class
and possibly some transient states.
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We define the bias of an MRP to be h = Hpr, where Hp = (I − P + P ∗)−1(I − P ∗). When
computing the bias for each state, we can set one bias to 0.

The gain g and the bias h in an MRP can be computed as follows:

(I − P )g = 0

g + (I − P )h = r

5.2 Optimality equations

Often we consider unichain models, where we have a constant optimal gain. A transition matrix
corresponding to every deterministic stationary policy unichain. So we have a single recurrent
class, plus a possibly empty set of transient states.

We can compute the average reward uniquely by solving ge + (I − P )h = r. This in case for P
unichain or irreducible. The optimality equations for the MDP can be solved by the gain and bias
of the MDP. These are set up as

0 = max
a∈As

r(s, a)− g +
∑
j∈S

p(j | s, a)h(j)− h(s)


or 0 = maxa∈As

{rd − ge + (Pd − I)h} in matrix notation. Also, define B(g, h) = maxa∈As
{rd −

ge + (Pd − I)h}. Whenever B(g∗, h∗) = 0 we have an optimal stationary policy that is average
optimal if d∗ is h∗-improving. The latter means that the decision rule is the largest for rd + Pdh.

6 Algorithms for average reward Markov decision problems

Again, we have here that the value iteration returns ϵ-optimal policies, whereas the other algorithms
return optimal policies. Each algorithm functions in the same fasion as for the discounted MDP,
except that the stop criterion and type of computation is different.

6.1 Value iteration

We need to consider here the fact that sp(v) = maxs v(s)−mins v(s).

The value iteration algorithm provides us several bounds on the gain, namely

g′ =
1

2

[
max
s∈S

(
vn+1(s)− vn(s)

)
+min

s∈S

(
vn+1(s)− vn(s)

)]
will result in

|g′ − g∗| < ϵ/2 and |g′ − g(dϵ)
∞
| < ϵ/2
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6.2 Policy iteration

As mentioned before, we can set the bias for one of the states to 0, then choose hn to satisfy
P ∗
dn
hn = 0 or −hn + (Pdn − I)w = 0 for some value w.

Interesting to mention is that at successive iterates we obtain a larger gain, otherwise we obtain a
larger bias.

6.3 Linear programming

For linear programming we set up a primal, but preferrably we solve the dual program. For the
latter we can conclude what the optimal decision rules should be.

When we find a basic feasible solution x for the dual LP, then dx(s) is deterministic. It either
equals the action if x(s, a) > 0 and the state exists, otherwise it can be chosen arbitrary. So the
feasible solution is also the policy.

7 Introduction to large scale discounted reward MDPs

In large-scale MDPs we assume that we have a very large state space, which can be infinitely large.
This might lead to unbounded rewards, which is why a different approach is needed here. We can
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claim for large scale discounted MDPs that under mild conditions, the optimal value and optimal
stationary policy exist. The idea is that we derive these conditions.

7.1 Assumptions existence optimal value and optimal stationary policy

We need the following assumptions: Here, we must choose the function w(s) accordingly, usually

this is somehow based on the context. Or it is given. If these conditions above hold, our value
function is bounded from above by µ

1−α [1+λκ+λ2κ2+ . . .+(λκ)J−1]w(s). Also, if these conditions
hold, then L and L are J-stage contractions on Vw (something with Banach spaces).

7.2 Finite-state approximations

What we want to do is to truncate the state space and approximate the value in order to reduce
a large computational time for algorithms (downscale the problem). We know that when we use
finite state approximation may result in converging monotonically to v∗λ. Define SN = {1, . . . , N},
fix a value u ∈ Vw and define

vN,u(s) =

{
v(s), s ≤ N

u(s), s > N

and the now operator

LN,u
d v(s) =


rd(s) + λ

∑
j≤N pd(j | s)v(j) + λ

∑
j>N pd(j | s)u(j)

s ≤ N
u(s), s > N

We can deduce that for a fixed N and policy for a MD policy that the operator on v(s) is an
N -stage contraction on Vw. This means that it has a unique fixed point in Vw, which results in
vN,u
d (s) being an N -state approximation to the value with a stationary policy.

The conditions that were mentioned before could lead to the conclusion that this value converges
monotonically from above to the optimal value as N grows large.
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8 Large scale average reward MDPs

To solve large scale average reward MDPs we can use the ‘differential discounted reward’ approach.
Meaning, we will approximate the value as we do for discounted MDPs. Define

g = lim
λ↑1

(1− λ)V ∗
λ (0)

h(s) = lim
λ↑1

(v∗λ(s)− V ∗
λ (0))

which results in the average reward optimality equation

h(s) = max
a∈As

r(s, a)− g +
∑
j∈S

p(j | s, a)h(j)


We can again set up a set of assumptions which will lead us to the existence of an optimal policy.
These are Whenever these conditions hold the optimality equations mentioned before have a solu-

tion. Ofttimes condition (1) is easy to verify, but this is not the case for the others. In that case,
we can check the following statements for a stationary policy such that:

• the derived Markov chain is positive recurrent (expected recurrence time is finite)

• gd
∞

> −∞

• The set of states for which the direct reward is larger that the gain mentioned above for some
action is nonempty and finite

The points above are usually easier to verify.

9 Introduction to Approximate Dynamic Programming

First of all, when dealing with very large MDPs, we encounter the curses of dimensionality. These
include dimensionality of the state space, the outcome space and the action space. Approximate
dynamic programming deals with these three types of curses of dimensionality. The idea of ADP is
that we step forward through time and try to approximate the value function, instead of analytically
computing it.
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9.1 Basic ADP algorithm

The general idea is that we perform several number of iterations. During each of these iterations
we determine the best policy by solving the optimality equations. This is done for every time
epoch of the MDP. When we arrive at the last epoch, we continue to the next iteration and the
process repeats itself. The algorithm can be summarized as follows:

9.2 Q-learning

Q-learning is one of the ADP algorithms that is extended. It is a strategy for problems with small
state and action spaces, where there is no mathematical model of the transition function. We
consider Q(s, a) to be the value of being in state s after taking action a and Q̄n(s, a) the statistical
estimate of Q(s, a) after n iterations.

In this case we choose an action an by determining the maximum of Q̄n−1(Sn, a). The updated
value of being in state Sn and taking action an is

q̂n = Ĉ (Sn, an) + γmax
a′∈A

Q̄n−1
(
Sn+1, a′

)
We update the Q-factors, namely the statistical estimates, as

Q̄n (Sn, an) = (1− αn−1) Q̄
n−1 (Sn, an) + αn−1q̂

n

The value of that iteration in state s equals the maximum of the Q-factors.

One of the issues that arise in Q-learning is that Q-factors might underestimate the value of a
state-action pair. Therefore the algorithm might not choose actions that take us to a certain state,
errors are not corrected or we ignore actions that might be attractive. Therefore, we need to make
a trade off between exploration or exploitation. In exploration we consider choosing an action
at random, in exploitation we choose the action that currently seems optimal. We consider the
sampling policy, which learns which action to take and the learning policy, which determines the
action that appears best. Both lead to on-policy learning (sampling = learning) and off-policy
learning (sampling ̸= learning).

9.3 Approximate value iteration

Approximate value iteration can be used to estimate the values without computing the one-step
transition matrix. In this algorithm we generate a sample for the exogenous information and
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determine the probability of that outcome. Afterwards, we approximate the expectation of the
transition state with

EV̄ n−1
(
SM (Sn, a,W )

)
≈

∑
ω∈Ω̂n

pn(ω)V̄ n−1
(
SM (Sn, a,W (ω))

)
and use this to estimate the value of being in state Sn with

v̂n = max
a∈A

C (Sn, a) + γ
∑
ω∈Ω̂n

pn(ω)V̄ n−1
(
SM (Sn, a,W (ω))

)
Lastly we update our estimate for the state as V̄ n (Sn) = (1− αn−1) V̄

n−1 (Sn) + αn−1v̂
n.

The approximate value iteration algorithm works as follows

9.4 Post-decision state variable

This is the state of a system after we made a decision, but before any new information arrives.
Whenever computing the estimate of the value of the transition function St+1 is easy we use the
pre-decision state variable, otherwise we opt for the post-decision state variable. Consider the
original transition function St+1 = SM (St, at,Wt+1). We can break it into two steps, which gives
us the post-decision state variable:

Sa
t = SM,a(St, at)

St+1 = SM,W (Sa
t ,Wt+1)

We can use these post-decision state variable in order to rewrite the optimality equations. Consider
Vt(St) to be the value of being in state St just before the decision and V a

t (S
a
t ) the value of being

in state Sa
t immediately after the decision. We can set up the following equations for the value

estimates:

V a
t−1

(
Sa
t−1

)
= E

[
Vt (St) | Sa

t−1

]
,

Vt (St) = max
at∈At

(Ct (St, at) + γV a
t (Sa

t )) ,

V a
t (Sa

t ) = E [Vt+1 (St+1) | Sa
t ] .

Substituting the third equation into the second gives us the Bellman equation where we define the
value at state St. Substituting the second equation into the first gives us the optimality equations
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around the post decision variable. The benefit of doing this is that we compute the conditional
expectation over the whole max-function instead of it appearing in the max-function itself. This
eases computation.

We can also set up an ADP algorithm with a post-decision state variable, where the value estimate
is updated using smoothing only. We get

10 Approximate Dynamic Programming

10.1 Value function approximations

10.2 Temporal-difference learning
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