Exam Markov Decision Theory and Algorithmic Methods (191531920)

January 27, 2012 8:45-11:45 hrs

This exam consists of 6 exercises. Motivate all your answers.

1. Consider a worker who begins each period with a current wage offer and has two actions. He can work at that wage or he can search for a new wage offer. If he chooses to search, he earns nothing during the current period, and his new wage is drawn according to some probability measure f from the interval $W = [0, \overline{w}]$. He cannot divide his time within a period between searching and working. Moreover, if a worker chooses to work during the period, then with probability $1 - \theta$ the same wage is available to him next period. But with probability θ he will lose his job at the beginning of next period and begin next period with a "wage" of zero.

The worker does not value leisure. Let $0 < \beta < 1$ be the discount factor, and $U : \mathbb{R}_+ \to \mathbb{R}_+$ the worker's utility function, which is continuously differentiable, strictly increasing and strictly concave with U(0) = 0 and $U'(0) < \infty$. If he earns c_t during period t then his total expected utility equals $E[\sum_{t=0}^{\infty} \beta^t U(c_t)]$. Let v be the supremum of this expected discounted utility.

(a) Show that v must satisfy

$$v(w) = \max\left\{U(w) + \beta[(1- heta)v(w) + heta v(0)], \beta \int_0^{\overline{w}} v(w')f(w')dw'
ight\}.$$

(b) Define $A = \beta \int_0^{\overline{w}} v(w') f(w') dw'$. Note that v(0) = A. Show that there is a unique $w^* \in W$ such that

$$v(w^*) = U(w^*) + \beta[(1 - \theta)v(w^*) + \theta A] = A.$$

(c) Show that v has the form

$$v(w) = \begin{cases} A & \text{if } w < w^*, \\ \frac{U(w) + \beta \theta A}{1 - \beta (1 - \theta)} & \text{if } w \ge w^*. \end{cases}$$

- (d) What does the optimal decision rule for the worker look like? Hint: it depends on w^* .
- 2. Consider the following infinite-horizon average reward Markov Decision Problem (MDP). There are two states, $S = \{s_1, s_2\}$. In state s_1 the available actions are a_1 and a_2 , with $r(s_1, a_1) = 5$, $r(s_1, a_2) = 10$, $p(s_2|s_1, a_1) = 1/2$, $p(s_2|s_1, a_2) = 1$. In state 2 there is one action a_3 with $r(s_2, a_3) = -2$, and $p(s_2|s_2, a_3) = 1/2$.
 - (a) What are the optimality equations for this particular MDP?
 - (b) Determine the optimal gain and average optimal stationary policy.
- 3. Consider an infinite horizon discounted MDP with discount factor λ .
 - (a) Show that $|r(s,a)| \leq M$ implies $||v_{\lambda}^*|| \leq M/(1-\lambda)$.
 - (b) What are the optimality equations for this MDP?
 - (c) Define $\mathcal{L}v = \sup_{d \in \mathsf{D}^{\mathsf{MD}}} (r_d + \lambda P_d v)$. Let $v \in V$. Prove that if $v \leq \mathcal{L}v$ then $v \leq v_{\lambda}^*$.

- 4. One way to find the equilibrium distribution of a large, aperiodic discrete-time Markov chain $\{X_n, n = 0, 1, 2, ...\}$ is to determine powers P^k of the transition matrix P.
 - (a) Give upper and lower bounds on $p_j = \lim_{t\to\infty} P(X_n = j)$ based on the matrix P^k , and prove for the lower bound that it is nondecreasing in k, and therefore indeed a lower bound on p_j .
 - (b) Explain in the standard power method (iterating $p^{(n+1)} = p^{(n)}P$ until $p^{(n+1)} p^{(n)}$ is small) why this scheme converges geometrically to the steady-state vector p and give the decay rate (i.e. rate of convergence).
- 5. Let $\{X(t), t \ge 0\}$ be a birth-death process on $\{0, 1, 2\}$ with birth rates $\lambda_0 = 1$ and $\lambda_1 = 2$, and death rates $\mu_1 = \mu_2 = 3$.
 - (a) Use uniformization to define a discrete time Markov chain $\{Y_n\}$ that has the same stationary distribution as $\{X(t)\}$. In particular give its transition matrix P.
 - (b) Use it to give an expression for $p_{02}(4) = P(X(4) = 2|X(0) = 0)$, and indicate how this can be used numerically.
- 6. Consider any quasi-birth-death process in continuous time, with m phases, where the transitions from states in level 0 to level 1 are the same as those from states in level i to level i + 1, i > 0.
 - (a) Write down the general structural form of the infinitesimal generator Q, and give the balance equations for the row vectors $p_i, i = 0, 1, 2, ...$; here $p_i = (p_{i0}, p_{i1}, ..., p_{i,m-1})$ contains the equilibrium probabilities for the states in level i.
 - (b) Under which condition is the process positive recurrent?
 - (c) If this condition holds, the solution can be written as $p_i = p_0 R^i$. How can p_0 and R be found in general?

Now consider an M/M/1 queue with arrival rate $\lambda = 1$ and service rate $\mu = 2$, with the additional feature that the server turns 'off' as soon as it becomes idle, and that it needs to start up (turn 'on') when a customer arrives to an empty system. During start-up, which takes an exponentially distributed amount of time with mean γ^{-1} , no customers are served.

- (d) Solve the equilibrium distribution by using the spectral expansion method. Hint: start out by trying solutions of the form $p_i = yx^i, i = 0, 1, 2, ...$
- (e) Give the steady state mean number of customers in the system.

Norm:

1					2		3			4		5			total			
a	b	с	d	a	b	a	b	С	a	b	a	b	a	b	С	d	e	
2	3	1	1	2	4	3	1	1	3	2	2	2	2	1	2	3	1	+4 = 40