Exam Markov Decision Theory and Algorithmic Methods (191531920)

January 25, 2013 8:45-11:45 hrs

This exam consists of 4 exercises. Motivate all your answers.

- 1. Consider the following infinite-horizon Markov Decision Problem (MDP) with the average reward criterion. Decisions are taken at times 0, 1, 2, There are two states, $S = \{s_1, s_2\}$, with actions $a_{1,1}$ and $a_{1,2}$ in state s_1 and action $a_{2,1}$ in state s_2 . Further, $r(s_1, a_{1,1}) = 3$, $r(s_1, a_{1,2}) = 4$, $r(s_2, a_{2,1}) = 5$ and $p(s_1|s_1, a_{1,1}) = 0$, $p(s_1|s_1, a_{1,2}) = 1/2$, $p(s_1|s_2, a_{2,1}) = 3/4$.
 - (a) The policy maker has to select a decision rule for each decision epoch. Give the definition of a decision rule. Also, describe the four classes of decision rules.
 - (b) For a given stationary policy d^{∞} the MDP reduces to an MRP. The optimality equations of an MRP are

$$(I-P)g = 0$$
 and $g + (I-P)h = r$.

Prove that if vectors g and h satisfy these equations, then $g = P^*r$ and $h = H_P r + u$ with u such that (I - P)u = 0.

- (c) Let $d_1(s_1) = a_{1,2}$ and $d_1(s_2) = a_{2,1}$. Determine the gain g and bias h of the resulting MRP.
- (d) Is the policy $(d_1)^{\infty}$ average optimal?
- (e) Two ways of solving average reward MDPs are policy iteration and linear programming. Mention one difference and one similarity between these methods.
- 2. Consider the same Markov decision problem as in exercise 1, only with two changes. First, in state s_2 there is a second action $a_{2,2}$ available with $r(s_2, a_{2,2}) = 6$, and $p(s_1|s_2, a_{2,2}) = 1$. Second, consider the discounted reward criterion with discount factor λ .
 - (a) What is the relation between v_{λ}^* and g^* , the optimal gain of the same MDP with average reward criterion?
 - (b) Perform one iteration of the value-iteration algorithm. Use starting value $v^0 = (4, 2)$ and $\varepsilon = 0.1$.
 - (c) Let $\{v^n\}$ denote the iterates of value iteration. Do we have monotone convergence (that is, $v^{n+1} \ge (\le)v^n$ for all n)?

- 3. Consider a discounted MDP with countable state space $S = \{0, 1, 2, \ldots\}$.
 - (a) Give two reasons why the small-scale Markov decision theory is not applicable for such an MDP.
 - (b) When dealing with 'unbounded' rewards, we need the following assumptions.
 - i. There exists a constant $\mu < \infty$ such that $\sup_{a \in A_s} |r(s, a)| \le \mu w(s)$.
 - ii. There exists a constant κ , $0 \le \kappa < \infty$, for which $\sum_{j \in S} p(j|s, a) w(j) \le \kappa w(s)$.
 - iii. For each λ , $0 \leq \lambda < 1$, there exists an α , $0 \leq \alpha < 1$, and an integer J such that $\lambda^J \sum_{j \in S} P^J_{\pi}(j|s)w(j) \leq \alpha w(s)$ for all $\pi = (d_1, \ldots, d_J)$ where $d_k \in D^{MD}$, $k \in \{1, 2, \ldots, J\}$.

Suppose these hold. What can you say about the solution(s) of the optimality equation?

- (c) Consider the following setting. Let $A_s = \{0, 1, 2, ..., M\}$, r(s, a) = s, and p(j|s, a) = 1 if j = s + a and 0 otherwise. Show that there exists a function w (which one?) such that assumptions i iii, as stated above, hold.
- 4. Consider a large-scale MDP with the discounted reward criterion.
 - (a) One method used in approximate dynamic programming (adp) is aggregation. Suppose we apply aggregation to our MDP. Describe the transition probabilities in the aggregated system as a function of the transition probabilities of the original system.
 - (b) Using aggregation, explain how to obtain a suboptimal policy when the control (action) is applied with knowledge of the aggregate state. Assume the control sets U(i) are independent of the state i.
 - (c) Another approach in adp works with *Q*-factors. How are *Q*-factor defined? What is their purpose?
 - (d) Describe the *Q*-learning algorithm. Mention two conditions that must be satisfied to guarentee convergence of the *Q*-learning algorithm. (There are more.)

Norm:

1					2			3			4				total
a	b	с	d	е	a	b	с	a	b	с	a	b	с	d	
2	3	3	2	2	2	3	2	2	2	3	2	3	3	2	+4 = 40