Exam Measure and Probability (157040)

 Thursday, 4 November 2004, 13.30-16.30 p.m.This exam consists of 10 problems

1. Let Ω be a set, \mathcal{F} a σ-field of subsets of Ω, and $\mu: \mathcal{F} \rightarrow[0, \infty]$ a function. When do we call
a. μ a measure?
b. $(\Omega, \mathcal{F}, \mu)$ a probability space?
2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that $\mu\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ for any sequence of sets $A_{n} \in \mathcal{F}$. Show by examples that the inequality may be strict or that it may be the equality.
3. Define Borel sets, and Borel measurable functions. Show that a monotone function on the real line is Borel.
4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A \in \mathcal{F}$. Show that $\mathbf{1}_{A}=0$ a.e. (almost everywhere) if and only if $\mu(A)=0$. If $f: \Omega \rightarrow \mathbb{R}$ is a measurable function such that $f \neq 0$ a.e., show also that $f \mathbf{1}_{A}=0$ a.e. implies $\mu(A)=0$.
5. Suppose that f is a Lebesgue-measurable function such that $f \geq 0$.
a. How is $\int_{\mathbb{R}} f d m$ defined?
b. Show that $\int_{\mathbb{R}} f d m>0$ if $m(\{x: f(x)>0\})>0$.
6. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. a constant random variable $X, X(\omega)=a$ for all $\omega \in[0,1]$;
b. $X:[0,1] \rightarrow \mathbb{R}$ given by $X(\omega)=\min \{\omega, 1-\omega\}$ (the distance to the nearest endpoint of the interval $[0,1]$);
c. $X:[0,1]^{2} \rightarrow \mathbb{R}$, the distance to the nearest edge of the square $[0,1]^{2}$.
7. Let $f_{X, Y}=\mathbf{1}_{A}$, where A is the triangle with corners at $(0,0),(2,0)$ and $(0,1)$. Find the conditional density $h(y \mid x)$ and conditional expectation $\mathbb{E}(Y \mid X=1)$.
8. Let μ and ν be two finite measures on a measurable space (Ω, \mathcal{F}) such that, for some $a>0, b>0$, we have $a \mu(A) \leq \nu(A) \leq b \mu(A)$ for all $A \in \mathcal{F}$. Show that μ and ν are equivalent measures (that is, $\mu \ll \nu$ and $\nu \ll \mu$) and that the respective Radon-Nikodym derivatives $f=d \nu / d \mu$ and $g=d \mu / d \nu$ satisfy $a \leq f \leq b \mu$-a.e. and $b^{-1} \leq g \leq a^{-1} \nu$-a.e.
9. Let F be an increasing, right-continuous function on \mathbb{R}, and m_{F} be the Lebesgue-Stieltjes measure corresponding to F.
a. Show that, for any fixed $c>0, \int_{\mathbb{R}}(F(x+c)-F(x)) d x=c m_{F}(\mathbb{R})$.
b. If F is a continuous function such that $\lim _{x \rightarrow-\infty} F(x)=0$, show that $\int_{\mathbb{R}} F(x) d F(x)=\left(m_{F}(\mathbb{R})\right)^{2} / 2$.
10. Consider a sequence of functions $f_{n}(x)=n^{2} e^{-n|x|}, x \in \mathbb{R}$, and let $f(x)=$ $0, x \in \mathbb{R}$. Does f_{n} converge to f
a. uniformly on \mathbb{R} ?
b. pointwise?
c. almost everywhere?
d. in L^{p}-norm?

1	2	3	4	5	6	7	8	9	10
2	3	3	2	3	3	2	3	3	3

Mark: $\frac{\text { Total }}{24} \times 9+1$ (rounded)

