Kenmerk: SK-158 Datum: 29 oktober 2004

Exam Measure and Probability (157040) Thursday, 4 November 2004, 13.30 - 16.30 p.m.

This exam consists of 10 problems

- 1. Let Ω be a set, \mathcal{F} a σ -field of subsets of Ω , and $\mu : \mathcal{F} \to [0, \infty]$ a function. When do we call
 - a. μ a measure?
 - b. $(\Omega, \mathcal{F}, \mu)$ a probability space?
- 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$ for any sequence of sets $A_n \in \mathcal{F}$. Show by examples that the inequality may be strict or that it may be the equality.
- 3. Define Borel sets, and Borel measurable functions. Show that a monotone function on the real line is Borel.
- 4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A \in \mathcal{F}$. Show that $\mathbf{1}_A = 0$ a.e. (almost everywhere) if and only if $\mu(A) = 0$. If $f : \Omega \to \mathbb{R}$ is a measurable function such that $f \neq 0$ a.e., show also that $f\mathbf{1}_A = 0$ a.e. implies $\mu(A) = 0$.
- 5. Suppose that f is a Lebesgue-measurable function such that $f \ge 0$. a. How is $\int_{\mathbb{R}} f dm$ defined?
 - b. Show that $\int_{\mathbb{R}} f dm > 0$ if $m(\{x : f(x) > 0\}) > 0$.
- 6. Consider the probability space $([0, 1], \mathcal{M}_{[0,1]}, m_{[0,1]})$. Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. a constant random variable X, $X(\omega) = a$ for all $\omega \in [0, 1]$;
 - b. $X : [0,1] \to \mathbb{R}$ given by $X(\omega) = \min\{\omega, 1-\omega\}$ (the distance to the nearest endpoint of the interval [0,1]);
 - c. $X : [0,1]^2 \to \mathbb{R}$, the distance to the nearest edge of the square $[0,1]^2$.

- 7. Let $f_{X,Y} = \mathbf{1}_A$, where A is the triangle with corners at (0,0), (2,0) and (0,1). Find the conditional density h(y|x) and conditional expectation $\mathbb{E}(Y|X=1)$.
- 8. Let μ and ν be two finite measures on a measurable space (Ω, \mathcal{F}) such that, for some a > 0, b > 0, we have $a\mu(A) \le \nu(A) \le b\mu(A)$ for all $A \in \mathcal{F}$. Show that μ and ν are equivalent measures (that is, $\mu \ll \nu$ and $\nu \ll \mu$) and that the respective Radon-Nikodym derivatives $f = d\nu/d\mu$ and $g = d\mu/d\nu$ satisfy $a \le f \le b \mu$ -a.e. and $b^{-1} \le g \le a^{-1} \nu$ -a.e.
- 9. Let F be an increasing, right-continuous function on \mathbb{R} , and m_F be the Lebesgue-Stieltjes measure corresponding to F.
 - a. Show that, for any fixed c > 0, $\int_{\mathbb{R}} (F(x+c) F(x)) dx = cm_F(\mathbb{R})$.
 - b. If F is a continuous function such that $\lim_{x\to-\infty} F(x) = 0$, show that $\int_{\mathbb{R}} F(x) dF(x) = (m_F(\mathbb{R}))^2/2.$
- 10. Consider a sequence of functions $f_n(x) = n^2 e^{-n|x|}$, $x \in \mathbb{R}$, and let f(x) = 0, $x \in \mathbb{R}$. Does f_n converge to f
 - a. uniformly on \mathbb{R} ?
 - b. pointwise?
 - c. almost everywhere?
 - d. in L^p -norm?

1	2	3	4	5	6	7	8	9	10
2	3	3	2	3	3	2	3	3	3

Mark: $\frac{\text{Total}}{24} \times 9 + 1$ (rounded)