Kenmerk: SK-???
Datum: 31 oktober 2005

Exam Measure and Probability (157040) Friday, 4 November 2005, 13.30-16.30 p.m.

This exam consists of 8 problems

1. Let Ω be a set, \mathcal{F} a σ-field of subsets of Ω, and $\mu: \mathcal{F} \rightarrow \mathbb{R}$ a function. When do we call
a. μ an outer measure?
b. μ a measure?
c. $(\Omega, \mathcal{F}, \mu)$ a probability space?
2. Suppose $E \subset \mathbb{R}$ is a (Lebesgue-)measurable set.
a. Define what is meant by saying that $f: E \rightarrow \mathbb{R}$ is measurable.
b. Show that $f: E \rightarrow \mathbb{R}$ is measurable if and only if $\{x \in E: f(x)>r\}$ is measurable for each rational number r.
c. Show that $\left\{x \in E: f_{1}(x)>f_{2}(x)\right\}$ is measurable if $f_{1}: E \rightarrow \mathbb{R}$ and $f_{2}: E \rightarrow \mathbb{R}$ are measurable. (Do not use any result without proof other than b.)
3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \geq 0$, and define $\nu: \mathcal{M} \rightarrow \mathbb{R}$ by

$$
\nu(A)=\int_{A} f d m, \quad A \in \mathcal{M}
$$

a. State the monotone convergence theorem.
b. Show that ν is a measure. (Hint: use the monotone convergence theorem.)
4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} e^{-n x^{2}} d x
$$

5. Show that the function $f(x)=x^{-1} \sin x$ is not Lebesgue integrable over the interval $(0, \infty)$.
6. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. the random variable X, given by $X(\omega)=2 \omega-1$,
b. the random variable X given by $X(\omega)=\max (\omega, 1-\omega)$.
7. Let X and Y be two random variables defined on the probability space (Ω, \mathcal{F}, P) with joint density

$$
f_{X, Y}(x, y)=\mathbf{1}_{A}(x, y), \quad(x, y) \in \mathbb{R}^{2}
$$

where A is the triangle with corners at $(0,2),(1,0)$ and $(1,2)$.
a. Find $P(X>Y)$.
a. Find the conditional density $f_{X \mid Y}(x \mid Y=y)$ of X given $Y=y$.
b. Determine $E(X \mid Y)$.
8. Consider the probability space $\left((0,1), \mathcal{M}_{(0,1)}, m_{(0,1)}\right)$ and, for $n=1,2, \ldots$, set

$$
X_{n}(\omega)=\left\{\begin{array}{lll}
n & \text { if } & 0<\omega<\frac{1}{n} \\
0 & \text { if } & \frac{1}{n}<\omega<1
\end{array}\right.
$$

Which of the following statements are true? (Justify your answers).
a. $X_{n} \rightarrow 0$ in probability.
b. $X_{n} \rightarrow 0$ almost surely.
c. $X_{n} \rightarrow 0$ pointwise.
d. $X_{n} \rightarrow 0$ in L^{1}-norm.
e. $X_{n} \rightarrow 0$ in L^{2}-norm.

1	2	3	4	5	6	7	8
3	4	3	3	2	3	3	3

Mark: $\frac{\text { Total }}{24} \times 9+1$ (rounded)

