Kenmerk: SK-EWI06/TW/SK/019/EvD
Datum: 27 januari 2006

Exam Measure and Probability (157040) Friday, 3 February 2006, 9.00-12.00 p.m.

This exam consists of 8 problems

1. Let Ω be a set, \mathcal{F} a σ-field of subsets of Ω, and $\mu: \mathcal{F} \rightarrow \mathbb{R}$. When do we call
a. μ an outer measure?
b. μ a measure?
c. $(\Omega, \mathcal{F}, \mu)$ a probability space?
2. a. Define what is meant by saying that $f: \mathbb{R} \rightarrow \mathbb{R}$ is (Lebesgue) measurable.
b. Show that the indicator function of a set $A \subset \mathbb{R}\left(\right.$ defined by $\mathbf{1}_{A}(x)=1$ if $x \in A$ and $\mathbf{1}_{A}(x)=0$ otherwise), is measurable if and only if A is a measurable set.
c. Give an example of a non-measurable function f such that $|f|$ is measurable.
3. Consider the probability space $\left([0,1], \mathcal{B}_{[0,1]}, m_{[0,1]}\right)$, and $X:[0,1] \rightarrow \mathbb{R}$.
a. Under which condition is the function X a random variable?
b. If X is a random variable, how is its probability distribution P_{X} defined?
c. Express P_{X} in terms of Lebesgue measure m if X is given by $X(\omega):=$ $3 \omega-2,0 \leq \omega \leq 1$.
4. Suppose that f is a Lebesgue-measurable function such that $f \geq 0$.
a. How is $\int_{\mathbb{R}} f d m$ defined?
b. Show that $\int_{\mathbb{R}} f d m>0$ if $m(\{x: f(x)>0\})>0$.
5. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1}{\left(1+\frac{x}{n}\right)^{n} \sqrt[n]{x}} d x
$$

6. Consider the probability space $\left([0,1], \mathcal{B}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. the random variable X, given by $X(\omega)=3 \omega-2$,
b. the random variable X given by $X(\omega)=\min (\omega, 1-\omega)$.
7. Let X and Y be two random variables defined on the probability space (Ω, \mathcal{F}, P) with joint density

$$
f_{X, Y}(x, y)=\mathbf{1}_{A}(x, y), \quad(x, y) \in \mathbb{R}^{2}
$$

where A is the triangle with corners at $(0,0),(1,0)$ and $(0,2)$.
a. Find $P(X>Y)$.
b. Find the conditional density $f_{Y \mid X}(y \mid X=x)$ of Y given $X=x$.
c. Determine $E(Y \mid X)$.
8. Consider the probability space $\left((0,1), \mathcal{B}_{(0,1)}, m_{(0,1)}\right)$ and, for $n=1,2, \ldots$, set $X_{n}(\omega)=\sqrt{n}(1-\omega)^{n}, 0 \leq \omega<1$. Which of the following statements are true? (Justify your answers).
a. $X_{n} \rightarrow 0$ in probability.
b. $X_{n} \rightarrow 0$ almost surely.
c. $X_{n} \rightarrow 0$ pointwise.
d. $X_{n} \rightarrow 0$ in L^{1}-norm.
e. $X_{n} \rightarrow 0$ in L^{2}-norm.

1	2	3	4	5	6	7	8
3	3	3	3	3	4	3	3

Mark: $\frac{\text { Total }}{25} \times 9+1$ (rounded)

