Exam Measure and Probability (157040) Friday, 3 February 2006, 9.00 - 12.00 p.m.

This exam consists of 8 problems

- 1. Let Ω be a set, \mathcal{F} a σ -field of subsets of Ω , and $\mu : \mathcal{F} \to \mathbb{R}$. When do we call a. μ an outer measure?
 - b. μ a measure?
 - c. $(\Omega, \mathcal{F}, \mu)$ a probability space?
- 2. a. Define what is meant by saying that $f : \mathbb{R} \to \mathbb{R}$ is (Lebesgue) measurable.
 - b. Show that the indicator function of a set $A \subset \mathbb{R}$ (defined by $\mathbf{1}_A(x) = 1$ if $x \in A$ and $\mathbf{1}_A(x) = 0$ otherwise), is measurable if and only if A is a measurable set.
 - c. Give an example of a non-measurable function f such that |f| is measurable.
- 3. Consider the probability space $([0,1], \mathcal{B}_{[0,1]}, m_{[0,1]})$, and $X : [0,1] \to \mathbb{R}$.
 - a. Under which condition is the function X a random variable?
 - b. If X is a random variable, how is its probability distribution P_X defined?
 - c. Express P_X in terms of Lebesgue measure m if X is given by $X(\omega) := 3\omega 2, \ 0 \le \omega \le 1.$
- 4. Suppose that f is a Lebesgue-measurable function such that $f \ge 0$.
 - a. How is $\int_{\mathbb{R}} f dm$ defined?
 - b. Show that $\int_{\mathbb{R}} f dm > 0$ if $m(\{x : f(x) > 0\}) > 0$.
- 5. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the dominated convergence theorem.
 - b. Evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{1}{(1 + \frac{x}{n})^n \sqrt[n]{x}} dx.$$

- 6. Consider the probability space $([0,1], \mathcal{B}_{[0,1]}, m_{[0,1]})$. Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. the random variable X, given by $X(\omega) = 3\omega 2$,
 - b. the random variable X given by $X(\omega) = \min(\omega, 1 \omega)$.
- 7. Let X and Y be two random variables defined on the probability space (Ω, \mathcal{F}, P) with joint density

$$f_{X,Y}(x,y) = \mathbf{1}_A(x,y), \quad (x,y) \in \mathbb{R}^2,$$

where A is the triangle with corners at (0,0), (1,0) and (0,2).

- a. Find P(X > Y).
- b. Find the conditional density $f_{Y|X}(y|X = x)$ of Y given X = x.
- c. Determine E(Y|X).
- 8. Consider the probability space $((0, 1), \mathcal{B}_{(0,1)}, m_{(0,1)})$ and, for $n = 1, 2, \ldots$, set $X_n(\omega) = \sqrt{n}(1-\omega)^n, \ 0 \le \omega < 1$. Which of the following statements are true? (Justify your answers).
 - a. $X_n \to 0$ in probability.
 - b. $X_n \to 0$ almost surely.
 - c. $X_n \to 0$ pointwise.
 - d. $X_n \rightarrow 0$ in L^1 -norm.
 - e. $X_n \to 0$ in L^2 -norm.

1	2	3	4	5	6	7	8
3	3	3	3	3	4	3	3

Mark: $\frac{\text{Total}}{25} \times 9 + 1$ (rounded)