Kenmerk: EWI07/TW/SK/016/EvD

Datum: 25 januari 2007

## Exam Measure and Probability (157040) Monday, 29 January 2007, 13.30 - 16.30 p.m.

## This exam consists of 8 problems

- 1. a. Define what is meant by  $m^*(A)$ , the Lebesgue outer measure of a subset A of  $\mathbb{R}$ .
  - b. Define what is meant by saying that  $A \subset \mathbb{R}$  is measurable.
  - c. Show that if  $A \subset \mathbb{R}$  and  $m^*(A) = 0$ , then A is measurable.
- 2. Let  $\Omega$  be a set,  $\mathcal{F}$  a  $\sigma$ -field of subsets of  $\Omega$ , and  $\mu$  a  $[0, \infty]$ -valued function on  $\mathcal{F}$ . When do we call
  - a.  $\mu$  a measure?
  - b.  $(\Omega, \mathcal{F}, \mu)$  a probability space?
- 3. Suppose  $E \subset \mathbb{R}$  is (Lebesgue-)measurable, and f and g are functions from E to  $\mathbb{R}$ .
  - a. Define what is meant by saying that f is measurable.
  - b. Show that the function  $h(x) = \min\{f(x), g(x)\}\$  is measurable if f and g are measurable.
- 4. Let  $(\Omega, \mathcal{F}, P)$  be a probability space, and let X be a non-negative random variable with  $0 < \mathbb{E}X = \int_{\Omega} X dP < \infty$ . For  $A \in \mathcal{F}$  define

$$P_X(A) = \frac{\int_A X dP}{\int_\Omega X dP}.$$

Show that  $P_X$  is a probability measure on  $(\Omega, \mathcal{F})$ . (Hint: you might need the monotone convergence theorem at some point.)

- 5. Consider the measure space  $(\mathbb{R}, \mathcal{M}, m)$ .
  - a. State the dominated convergence theorem.
  - b. Evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{n \sin(x)}{(1 + n^2 x^{1/2})} dx.$$

- 6. Consider the probability space ([0, 1],  $\mathcal{M}_{[0,1]}$ ,  $m_{[0,1]}$ ). Find  $F_X$ , the distribution function, and  $\mathbb{E}(X)$ , the expectation of
  - a. the random variable X given by  $X(\omega) = 1$  if  $\omega$  is rational and  $X(\omega) = 0$  otherwise;
  - b. the random variable X given by  $X(\omega) = \omega^2$ .
- 7. Let m be Lebesgue measure and P a probability measure on  $(\mathbb{R}, \mathcal{B})$  and define  $F(x) := P((-\infty, x])$  and  $G_c(x) := F(x+c) F(x), \ x \in \mathbb{R}$ .
  - a. Show that, for any fixed c > 0,  $\int_{\mathbb{R}} G_c dm = c$ .
  - b. Show that if F is continuous, then  $\int_{\mathbb{R}} F dP = 1/2$ .

(Hint: use Fubini's theorem.)

- 8. Consider a sequence of functions  $f_n(x) = n^2 e^{-n|x|}$ ,  $x \in \mathbb{R}$ , and let f(x) = 0,  $x \in \mathbb{R}$ . Does  $f_n$  converge to f
  - a. uniformly on  $\mathbb{R}$ ?
  - b. pointwise?
  - c. almost everywhere?
  - d. in  $L^p$ -norm?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
| 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 |

Mark:  $\frac{\text{Total}}{18} \times 9 + 1$  (rounded)