Kenmerk: EWI10/TW/SP/002
Datum: 7 januari 2010

Exam Measure and Probability (157040)
Monday, 18 January 2010, 8.45-11.45 a.m.
This exam consists of 7 problems

1. Let Ω be a set, \mathcal{F} a collection of subsets of $\Omega, \mu: \mathcal{F} \rightarrow \mathbb{R}$, and $f: \Omega \rightarrow \mathbb{R}$. When do we call
a. \mathcal{F} a σ-field?
b. μ a measure?
c. $(\Omega, \mathcal{F}, \mu)$ a probability space?

Suppose that \mathcal{F} is a σ-field.
d. What does it mean to say that f is \mathcal{F}-measurable?
e. Let f_{n} be a sequence of \mathcal{F}-measurable functions such that $f_{n}(\omega) \rightarrow f(\omega)$ as $n \rightarrow \infty$ for each $\omega \in \Omega$. Show that the function f is \mathcal{F}-measurable.
2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the monotone convergence theorem.
b. Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of non-negative measurable functions and define $g=\sum_{n=1}^{\infty} f_{n}$. Show that

$$
\int g d m=\sum_{n=1}^{\infty} \int f_{n} d m
$$

3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}} d x
$$

4. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two measure spaces, and let $f: \Omega_{1} \times \Omega_{2} \rightarrow$ \mathbb{R} be a measurable function on the product space $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}, \mu_{1} \times \mu_{2}\right)$.
a. Under which condition do we have

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f d \mu_{1}\right) d \mu_{2} ?
$$

b. Use Fubini's Theorem to show that for any distribution function F

$$
\int_{\mathbb{R}}(F(x+a)-F(x)) d x=a .
$$

5. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. a constant random variable $X, X(\omega)=a$ for all $\omega \in[0,1]$;
b. the random variable X given by $X(\omega)=\frac{1}{1+\omega}$.
6. Let P_{1}, P_{2} and P_{3} be probability measures on $(\mathbb{R}, \mathcal{B})$.
a. What is meant by $P_{2} \ll P_{1}$ (P_{2} is absolutely continuous with respect to P_{1})?
b. What does the Radon-Nikodym Theorem say about the relation between P_{1} and P_{2} if $P_{2} \ll P_{1}$?
c. Let $P_{1}=\frac{1}{2}\left(\delta_{0}+\delta_{10}\right), P_{2}=\frac{1}{10} m_{[0,10]}$ and $P_{3}=\frac{1}{2} P_{1}+\frac{1}{2} P_{2}$. For which $i \neq j$ do we have $P_{i} \ll P_{j}$? Find the Radon-Nikodym derivative in each such case.
7. Consider the probability space $\left([0,1), \mathcal{M}_{[0,1]}, m_{[0,1)}\right)$ and, for $n=1,2, \ldots$, set

$$
X_{n}(\omega)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq \omega<\frac{1}{2}-\frac{1}{2 n} \\
n & \text { if } & \frac{1}{2}-\frac{1}{2 n} \leq \omega<\frac{1}{2} \\
\frac{1}{n} & \text { if } & \frac{1}{2} \leq \omega<1
\end{array}\right.
$$

a. Find the distribution function $F_{n}(x)$ of X_{n}.
b. Which of the following statements are true? (Justify your answers).
(i) $X_{n} \rightarrow 0$ in probability.
(ii) $X_{n} \rightarrow 0$ weakly.
(iii) $X_{n} \rightarrow 0$ almost surely.
(iv) $X_{n} \rightarrow 0$ pointwise.
(v) $X_{n} \rightarrow 0$ in L^{1}-norm.
(vi) $X_{n} \rightarrow 0$ uniformly.

1	2	3	4	5	6	7
8	4	4	3	3	4	4

Mark: $\frac{\text { Total }}{30} \times 9+1$ (rounded)

