Kenmerk: EWI10/TW/SP/002 Datum: 7 januari 2010

Exam Measure and Probability (157040) Monday, 18 January 2010, 8.45 - 11.45 a.m.

This exam consists of 7 problems

- 1. Let Ω be a set, \mathcal{F} a collection of subsets of Ω , $\mu : \mathcal{F} \to \mathbb{R}$, and $f : \Omega \to \mathbb{R}$. When do we call
 - a. $\mathcal{F} \neq \sigma$ -field?
 - b. μ a measure?

b.

c. $(\Omega, \mathcal{F}, \mu)$ a probability space?

Suppose that \mathcal{F} is a σ -field.

- d. What does it mean to say that f is \mathcal{F} -measurable?
- e. Let f_n be a sequence of \mathcal{F} -measurable functions such that $f_n(\omega) \to f(\omega)$ as $n \to \infty$ for each $\omega \in \Omega$. Show that the function f is \mathcal{F} -measurable.
- 2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the monotone convergence theorem.
 - b. Let $\{f_n\}_{n\geq 1}$ be a sequence of non-negative measurable functions and define $g = \sum_{n=1}^{\infty} f_n$. Show that

$$\int g dm = \sum_{n=1}^{\infty} \int f_n dm.$$

- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the dominated convergence theorem.

Evaluate
$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} dx.$$

- 4. Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces, and let $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a measurable function on the product space $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, \mu_1 \times \mu_2)$.
 - a. Under which condition do we have

$$\int_{\Omega_1} \left(\int_{\Omega_2} f d\mu_2 \right) d\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f d\mu_1 \right) d\mu_2?$$

(This is Fubini's Theorem.)

b. Use Fubini's Theorem to show that for any distribution function F

$$\int_{\mathbb{R}} (F(x+a) - F(x))dx = a.$$

- 5. Consider the probability space $([0, 1], \mathcal{M}_{[0,1]}, m_{[0,1]})$. Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. a constant random variable $X, X(\omega) = a$ for all $\omega \in [0, 1]$;
 - b. the random variable X given by $X(\omega) = \frac{1}{1+\omega}$.
- 6. Let P_1 , P_2 and P_3 be probability measures on $(\mathbb{R}, \mathcal{B})$.
 - a. What is meant by $P_2 \ll P_1$ (P_2 is absolutely continuous with respect to P_1)?
 - b. What does the *Radon-Nikodym Theorem* say about the relation between P_1 and P_2 if $P_2 \ll P_1$?
 - c. Let $P_1 = \frac{1}{2}(\delta_0 + \delta_{10}), P_2 = \frac{1}{10}m_{[0,10]}$ and $P_3 = \frac{1}{2}P_1 + \frac{1}{2}P_2$. For which $i \neq j$ do we have $P_i \ll P_j$? Find the Radon-Nikodym derivative in each such case.
- 7. Consider the probability space $([0,1), \mathcal{M}_{[0,1)}, m_{[0,1)})$ and, for $n = 1, 2, \ldots$, set

$$X_n(\omega) = \begin{cases} 0 & \text{if } 0 \le \omega < \frac{1}{2} - \frac{1}{2n} \\ n & \text{if } \frac{1}{2} - \frac{1}{2n} \le \omega < \frac{1}{2} \\ \frac{1}{n} & \text{if } \frac{1}{2} \le \omega < 1. \end{cases}$$

- a. Find the distribution function $F_n(x)$ of X_n .
- b. Which of the following statements are true? (Justify your answers).
 - (i) $X_n \to 0$ in probability.
 - (ii) $X_n \to 0$ weakly.
 - (iii) $X_n \to 0$ almost surely.
 - (iv) $X_n \to 0$ pointwise.
 - (v) $X_n \to 0$ in L^1 -norm.
 - (vi) $X_n \to 0$ uniformly.

1	2	3	4	5	6	7
8	4	4	3	3	4	4

Mark: $\frac{\text{Total}}{30} \times 9 + 1$ (rounded)