Exam Measure and Probability (157040) Thursday, 29 April 2010, 13.45 - 16.45 p.m.

This exam consists of 6 problems

- 1. a. Define what is meant by $m^*(A)$, the Lebesgue outer measure of $A \subset \mathbb{R}$.
 - b. Use the countable subadditivity (and the definition) of Lebesgue outer measure to show that $m^*(A) = 0$ implies $m^*(A \cup B) = m^*(B)$ for each $B \subset \mathbb{R}$.
 - c. Define what is meant by saying that $A \subset \mathbb{R}$ is (Lebesgue) measurable.
 - d. Define what is meant by saying that $f : \mathbb{R} \to \mathbb{R}$ is (Lebesgue) measurable.
 - e. Show that the indicator function of a set $A \subset \mathbb{R}$ (defined by $\mathbf{1}_A(x) = 1$ if $x \in A$ and $\mathbf{1}_A(x) = 0$ otherwise), is (Lebesgue) measurable if and only if A is a (Lebesgue) measurable set.
 - f. Define what is meant by saying that the (Lebesgue) measurable function $f : \mathbb{R} \to \mathbb{R}$ is (Lebesgue) integrable.
- 2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the monotone convergence theorem.
 - b. (*Borel-Cantelli lemma*) Suppose $\{E_k\}$ is a sequence of measurable sets satisfying

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Show that m(F) = 0 when $F = \{x : x \text{ belongs to infinitely many sets } E_k\}$. (Hint: define $f_n(x) = \sum_{k=1}^n \mathbb{I}_{E_k}(x)$.)

- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the *dominated convergence theorem*.
 - b. Evaluate

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2} dx.$$

(Apart from a normalizing constant, the integrand is the density function for the t-distribution with n degrees of freedom.)

- 4. Consider the (Lebesgue) measurable function $f : \mathbb{R}^2 \to \mathbb{R}$.
 - a. What does Fubini's theorem tell us about $\iint_{\mathbb{R}^2} f dm_2$?
 - b. Show that if f is the joint density function of the absolutely continuous random variables X and Y, then X and Y are independent if and only if

$$f(x,y) = f_X(x)f_Y(y)$$
 a.e.

- 5. Let μ and ν be two finite measures on a measurable space (Ω, \mathcal{F}) .
 - a. What is meant by $\mu(A) \ll \nu(A)$ (μ is absolutely continuous with respect to ν)?

Suppose that, for some a > 0, b > 0, we have $a\mu(A) \le \nu(A) \le b\mu(A)$ for all $A \in \mathcal{F}$.

- b. Show that μ and ν are equivalent measures (that is, $\mu \ll \nu$ and $\nu \ll \mu$).
- c. Show that the respective Radon-Nikodym derivatives $f = d\nu/d\mu$ and $g = d\mu/d\nu$ satisfy $a \le f \le b \mu$ -a.e. and $b^{-1} \le g \le a^{-1} \nu$ -a.e.
- 6. Consider the probability space $([0, 1], \mathcal{M}_{[0,1]}, m_{[0,1]})$ and, for $n = 1, 2, \ldots$, set

$$X_n(\omega) = \begin{cases} n^{2/3} & \text{if } 0 \le \omega < \frac{1}{n} \\ n^{-1/3} & \text{if } \frac{1}{n} \le \omega \le 1. \end{cases}$$

- a. Find the distribution function $F_n(x)$ of X_n and $\mathbb{E}(X_n)$.
- b. Which of the following statements are true? (Justify your answers).
 - (i) $X_n \to 0$ in probability.
 - (ii) $X_n \to 0$ almost surely.
 - (iii) $X_n \to 0$ pointwise.
 - (iv) $X_n \to 0$ in L^1 -norm.
 - (v) $X_n \to 0$ in L^2 -norm.
 - (vi) $X_n \to 0$ uniformly.

1	2	3	4	5	6
7	3	4	5	4	4

Mark: $\frac{\text{Total}}{27} \times 9 + 1$ (rounded)