Kenmerk: EWI10/TW/SP/026
Datum: 22 april 2010

Exam Measure and Probability (157040)
Thursday, 29 April 2010, 13.45-16.45 p.m.
This exam consists of 6 problems

1. a. Define what is meant by $m^{*}(A)$, the Lebesgue outer measure of $A \subset \mathbb{R}$.
b. Use the countable subadditivity (and the definition) of Lebesgue outer measure to show that $m^{*}(A)=0$ implies $m^{*}(A \cup B)=m^{*}(B)$ for each $B \subset \mathbb{R}$.
c. Define what is meant by saying that $A \subset \mathbb{R}$ is (Lebesgue) measurable.
d. Define what is meant by saying that $f: \mathbb{R} \rightarrow \mathbb{R}$ is (Lebesgue) measurable.
e. Show that the indicator function of a set $A \subset \mathbb{R}$ (defined by $\mathbf{1}_{A}(x)=1$ if $x \in A$ and $\mathbf{1}_{A}(x)=0$ otherwise), is (Lebesgue) measurable if and only if A is a (Lebesgue) measurable set.
f. Define what is meant by saying that the (Lebesgue) measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is (Lebesgue) integrable.
2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the monotone convergence theorem.
b. (Borel-Cantelli lemma) Suppose $\left\{E_{k}\right\}$ is a sequence of measurable sets satisfying

$$
\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty
$$

Show that $m(F)=0$ when $F=\left\{x: x\right.$ belongs to infinitely many sets $\left.E_{k}\right\}$. (Hint: define $f_{n}(x)=\sum_{k=1}^{n} \mathbb{I}_{E_{k}}(x)$.)
3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2} d x
$$

(Apart from a normalizing constant, the integrand is the density function for the t-distribution with n degrees of freedom.)
4. Consider the (Lebesgue) measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
a. What does Fubini's theorem tell us about $\iint_{\mathbb{R}^{2}} f d m_{2}$?
b. Show that if f is the joint density function of the absolutely continuous random variables X and Y, then X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y) \text { a.e. }
$$

5. Let μ and ν be two finite measures on a measurable space (Ω, \mathcal{F}).
a. What is meant by $\mu(A) \ll \nu(A)$ (μ is absolutely continuous with respect to $\nu)$?
Suppose that, for some $a>0, b>0$, we have $a \mu(A) \leq \nu(A) \leq b \mu(A)$ for all $A \in \mathcal{F}$.
b. Show that μ and ν are equivalent measures (that is, $\mu \ll \nu$ and $\nu \ll \mu$).
c. Show that the respective Radon-Nikodym derivatives $f=d \nu / d \mu$ and $g=$ $d \mu / d \nu$ satisfy $a \leq f \leq b \mu$-a.e. and $b^{-1} \leq g \leq a^{-1} \nu$-a.e.
6. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$ and, for $n=1,2, \ldots$, set

$$
X_{n}(\omega)=\left\{\begin{array}{lll}
n^{2 / 3} & \text { if } \quad 0 \leq \omega<\frac{1}{n} \\
n^{-1 / 3} & \text { if } \quad \frac{1}{n} \leq \omega \leq 1
\end{array}\right.
$$

a. Find the distribution function $F_{n}(x)$ of X_{n} and $\mathbb{E}\left(X_{n}\right)$.
b. Which of the following statements are true? (Justify your answers).
(i) $X_{n} \rightarrow 0$ in probability.
(ii) $X_{n} \rightarrow 0$ almost surely.
(iii) $X_{n} \rightarrow 0$ pointwise.
(iv) $X_{n} \rightarrow 0$ in L^{1}-norm.
(v) $X_{n} \rightarrow 0$ in L^{2}-norm.
(vi) $X_{n} \rightarrow 0$ uniformly.

1	2	3	4	5	6
7	3	4	5	4	4

Mark: $\frac{\text { Total }}{27} \times 9+1$ (rounded)

