Kenmerk: EWI/TW/SP/11-031 Datum: 28 maart 2011

Exam Measure and Probability (191570401) Monday 4 April 2011, 13.45 - 16.45 p.m.

This exam consists of 7 problems

- 1. Let Ω be a set, \mathcal{F} a σ -field of subsets of Ω , and $\mu : \mathcal{F} \to \mathbb{R}$. When do we call a. μ an outer measure?
 - b. μ a measure?
 - c. $(\Omega, \mathcal{F}, \mu)$ a probability space?
- 2. Suppose $E \subset \mathbb{R}$ is a (Lebesgue-)measurable set.
 - a. Define what is meant by saying that $f: E \to \mathbb{R}$ is measurable.
 - b. Show that $f: E \to \mathbb{R}$ is measurable if and only if $\{x \in E : f(x) > r\}$ is measurable for each rational number r. (Hint: for each $a \in \mathbb{R}$ there is a decreasing sequence of rational numbers r_n such that $a = \lim_{n \to \infty} r_n$.)
 - c. Use the result of b. to show that $\{x \in E : f_1(x) > f_2(x)\}$ is measurable if $f_1 : E \to \mathbb{R}$ and $f_2 : E \to \mathbb{R}$ are measurable.
- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Let $f : \mathbb{R} \to \mathbb{R}$ and $f \ge 0$, and define $\nu : \mathcal{M} \to \mathbb{R}$ by

$$u(A) = \int_A f dm, \quad A \in \mathcal{M}.$$

- a. State the monotone convergence theorem.
- b. Show that ν is a measure. (Hint: use the monotone convergence theorem.)
- 4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the dominated convergence theorem.
 - b. Evaluate

$$\lim_{n \to \infty} \int_0^1 e^{-nx^2} dx.$$

- 5. Consider the probability space $([0, 1], \mathcal{M}_{[0,1]}, m_{[0,1]})$. Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. the random variable X, given by $X(\omega) = 2\omega 1$,
 - b. the random variable X given by $X(\omega) = \max(\omega, 1 \omega)$.
- 6. Let (Ω, \mathcal{F}) be a measurable space and let μ and ν be finite measures on (Ω, \mathcal{F}) .
 - a. What is meant by $\nu \ll \mu$ (ν is absolutely continuous with respect to μ)?
 - b. What does the *Radon-Nikodym Theorem* say about the relation between μ and ν if $\nu \ll \mu$?
 - c. Give the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ if $\nu \ll \mu$ and Ω is finite.
- 7. Consider the probability space $((0,1), \mathcal{M}_{(0,1)}, m_{(0,1)})$ and, for $n = 1, 2, \ldots$, set

$$X_n(\omega) = \begin{cases} n & \text{if } 0 < \omega < \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} < \omega < 1. \end{cases}$$

Which of the following statements are true? (Justify your answers).

- a. $X_n \to 0$ in probability.
- b. $X_n \to 0$ almost surely.
- c. $X_n \to 0$ pointwise.
- d. $X_n \to 0$ in L^1 -norm.
- e. $X_n \rightarrow 0$ in L^2 -norm.

1	2	3	4	5	6	7
3	3	2	2	2	3	3

Mark: $\frac{\text{Total}}{18} \times 9 + 1$ (rounded)