Exam Measure and Probability (191570401)

This exam consists of 7 problems

1. Consider the measure space $\left((0,1), \mathcal{M}_{(0,1)}, m_{(0,1)}\right)$.
a. Define what is meant by saying that $f:(0,1) \rightarrow \mathbb{R}$ is measurable.
b. Define what is meant by saying that $f:(0,1) \rightarrow \mathbb{R}$ is integrable.

A measurable function $f:(0,1) \rightarrow \mathbb{R}$ is said to be mean-square integrable if $\int_{(0,1)} f^{2} d m<\infty$.
c. Show that every mean-square integrable function is integrable.
2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the monotone convergence theorem.
b. (Borel-Cantelli lemma) Suppose $\left\{E_{k}\right\}$ is a sequence of measurable sets satisfying

$$
\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty
$$

Show that $m(F)=0$ when $F=\left\{x: x\right.$ belongs to infinitely many sets $\left.E_{k}\right\}$. (Hint: A possible approach is to define $f_{n}=\sum_{k=1}^{n} \mathbb{I}_{E_{k}}, f=\lim _{n \rightarrow \infty} f_{n}$, and show that $\int_{\mathbb{R}} f d m<\infty$.)
3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{-n} \sin \left(\frac{x}{n}\right) d x
$$

4. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. $X:[0,1] \rightarrow \mathbb{R}$ given by $X(\omega)=\min \{\omega, 1-\omega\}$ (the distance to the nearest endpoint of the interval $[0,1]$);
b. $X:[0,1]^{2} \rightarrow \mathbb{R}$, the distance to the nearest edge of the square $[0,1]^{2}$.
5. Consider the (Lebesgue) measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
a. What does Fubini's theorem tell us about $\iint_{\mathbb{R}^{2}} f d m_{2}$?
b. Evaluate

$$
\int_{E} y \sin (x) e^{-x y} d x d y
$$

where $E=(0, \infty) \times(0,1)$, and justify your steps.
6. Consider the interval $[-1,1]$ with Lebesgue measure $m_{[-1,1]}$. and let ν be a measure on the measurable space $\left([-1,1], \mathcal{B}_{[-1,1]}\right)$ such that

$$
\nu([-1, x])= \begin{cases}0 & \text { if } \quad-1 \leq x<0 \\ 1+x^{2} & \text { if } \quad 0 \leq x \leq 1\end{cases}
$$

a. Show that ν is not absolutely continuous with respect to $m_{[-1,1]}$.
b. Give the Lebesgue decomposition of ν with respect to $m_{[-1,1]}$, that is, determine ν_{a} and ν_{s} such that $\nu=\nu_{a}+\nu_{s}, \nu_{a} \ll m_{[-1,1]}$ and $\nu_{s} \perp m_{[-1,1]}$.
c. Determine the Radon-Nikodym derivative of ν_{a} with respect to $m_{[-1,1]}$.
7. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$ and set

$$
X_{n}(\omega)=\max \left\{n-n^{2}\left|\omega-\frac{1}{n}\right|, 0\right\}, \quad n=1,2, \ldots
$$

a. Does X_{n} converge to 0 uniformly? Pointwise?
b. Does X_{n} converge to 0 almost surely? In probability?
c. Does X_{n} converge to 0 in L^{1}-norm?

Motivate your answers.

