Exam Measure and Probability (191570401)

This exam consists of 7 problems

- 1. Consider the measure space $((0,1), \mathcal{M}_{(0,1)}, m_{(0,1)})$.
 - a. Define what is meant by saying that $f:(0,1) \to \mathbb{R}$ is measurable.
 - b. Define what is meant by saying that $f:(0,1) \to \mathbb{R}$ is integrable.

A measurable function $f : (0,1) \to \mathbb{R}$ is said to be *mean-square integrable* if $\int_{(0,1)} f^2 dm < \infty$.

- c. Show that every mean-square integrable function is integrable.
- 2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the monotone convergence theorem.
 - b. (*Borel-Cantelli lemma*) Suppose $\{E_k\}$ is a sequence of measurable sets satisfying

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Show that m(F) = 0 when $F = \{x : x \text{ belongs to infinitely many sets } E_k\}$. (Hint: A possible approach is to define $f_n = \sum_{k=1}^n \mathbb{I}_{E_k}, f = \lim_{n \to \infty} f_n$, and show that $\int_{\mathbb{R}} f dm < \infty$.)

- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the dominated convergence theorem.
 - b. Evaluate

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin\left(\frac{x}{n}\right) dx.$$

- 4. Consider the probability space $([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]})$. Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. $X : [0,1] \to \mathbb{R}$ given by $X(\omega) = \min\{\omega, 1-\omega\}$ (the distance to the nearest endpoint of the interval [0,1]);
 - b. $X : [0,1]^2 \to \mathbb{R}$, the distance to the nearest edge of the square $[0,1]^2$.

- 5. Consider the (Lebesgue) measurable function $f : \mathbb{R}^2 \to \mathbb{R}$.
 - a. What does Fubini's theorem tell us about $\iint_{\mathbb{R}^2} f dm_2$?
 - b. Evaluate

$$\int_E y \sin(x) e^{-xy} dx dy,$$

where $E = (0, \infty) \times (0, 1)$, and justify your steps.

6. Consider the interval [-1, 1] with Lebesgue measure $m_{[-1,1]}$. and let ν be a measure on the measurable space $([-1, 1], \mathcal{B}_{[-1,1]})$ such that

$$\nu([-1,x]) = \begin{cases} 0 & \text{if } -1 \le x < 0\\ 1+x^2 & \text{if } 0 \le x \le 1. \end{cases}$$

- a. Show that ν is *not* absolutely continuous with respect to $m_{[-1,1]}$.
- b. Give the Lebesgue decomposition of ν with respect to $m_{[-1,1]}$, that is, determine ν_a and ν_s such that $\nu = \nu_a + \nu_s$, $\nu_a \ll m_{[-1,1]}$ and $\nu_s \perp m_{[-1,1]}$.
- c. Determine the Radon-Nikodym derivative of ν_a with respect to $m_{[-1,1]}$.
- 7. Consider the probability space $([0,1],\mathcal{M}_{[0,1]},m_{[0,1]})$ and set

$$X_n(\omega) = \max\left\{n - n^2 | \omega - \frac{1}{n} |, 0\right\}, \quad n = 1, 2, \dots$$

- a. Does X_n converge to 0 uniformly? Pointwise?
- b. Does X_n converge to 0 almost surely? In probability?
- c. Does X_n converge to 0 in L^1 -norm?

Motivate your answers.