Exam Measure and Probability (191570401) Monday 21 January 2013, 8.45 - 11.45 p.m.

This exam consists of 8 problems

- 1. Let Ω be a set, \mathcal{F} a collection of subsets of Ω , and $\mu : \mathcal{F} \to \mathbb{R}$. When do we call
 - a. $\mathcal F$ a σ -field?
 - b. μ an outer measure?
 - c. μ a measure?
 - d. $(\Omega, \mathcal{F}, \mu)$ a probability space?
- 2. Suppose $E \subset \mathbb{R}$ is a (Lebesgue-)measurable set.
 - a. Define what is meant by saying that $f: E \to \mathbb{R}$ is measurable.
 - b. Show that $f : E \to \mathbb{R}$ is measurable if and only if $\{x \in E : f(x) > r\}$ is measurable for each rational number r. (Hint: for each $a \in \mathbb{R}$ there is a decreasing sequence of rational numbers r_n such that $a = \lim_{n \to \infty} r_n$.)
- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the monotone convergence theorem.
 - Let $f : \mathbb{R} \to \mathbb{R}$ be measurable and $f \ge 0$, and define $\nu : \mathcal{M} \to \mathbb{R}$ by

$$u(A) = \int_A f dm, \quad A \in \mathcal{M}.$$

- b. Show that ν is a measure. (Hint: use the monotone convergence theorem.)
- 4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the dominated convergence theorem.
 - b. Evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{n \sin(x)}{1 + n^2 \sqrt{x}} dx.$$

- 5. Consider the probability space $([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]})$. Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. the random variable X, given by $X(\omega) = 2\omega 1$,
 - b. the random variable X given by $X(\omega) = \max(\omega, 1 \omega)$.

- 6. Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces, and let $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a measurable function on the product space $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, \mu_1 \times \mu_2)$.
 - a. (Fubini's Theorem) Under which condition do we have

$$\int_{\Omega_1 \times \Omega_2} f d(\mu_1 \times \mu_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f d\mu_2 \right) d\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f d\mu_1 \right) d\mu_2?$$

b. Evaluate

$$\int_E y \sin x e^{-xy} dx dy,$$

where $E = (0, \infty) \times (0, 1)$, and justify your steps.

- 7. Let (Ω, F) be a measurable space and let μ and ν be finite measures on (Ω, F).
 a. What is meant by ν ≪ μ (ν is absolutely continuous with respect to μ)?
 - b. What does the *Radon-Nikodym Theorem* say about the relation between μ and ν if $\nu \ll \mu$?
 - c. Give the $Radon\text{-}Nikodym\ derivative\ \frac{d\nu}{d\mu}$ if $\nu\ll\mu$ and Ω is finite.
- 8. Consider the probability space $([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]})$ and set

$$X_n(\omega) = \max\left\{n - n^2 | \omega - \frac{1}{n} |, 0\right\}, \quad n = 1, 2, \dots$$

- a. Does X_n converge to 0 uniformly? Pointwise?
- b. Does X_n converge to 0 almost surely? In probability?
- c. Does X_n converge to 0 in L^1 -norm?

Motivate your answers.

1				2		3		4		5		6		7			8		
а	b	с	d	а	b	а	b	а	b	а	b	а	b	а	b	с	а	b	с
2	2	2	1	1	3	1	2	2	2	2	2	2	2	1	1	2	2	2	2

Mark: $\frac{\text{Total}}{36} \times 9 + 1$ (rounded)