Exam Measure and Probability (191570401)
 Wednesday 10 April 2013, 8.45 - 11.45 p.m.

This exam consists of 8 problems

1. Let Ω be a set, \mathcal{F} a collection of subsets of Ω, and $\mu: \mathcal{F} \rightarrow \mathbb{R}$. When do we call
a. \mathcal{F} a σ-field?
b. μ an outer measure?
c. μ a measure?
d. $(\Omega, \mathcal{F}, \mu)$ a probability space?
2. Suppose $E \subset \mathbb{R}$ is a (Lebesgue-)measurable set.
a. Define what is meant by saying that $f: E \rightarrow \mathbb{R}$ is measurable.
b. Show that $f: E \rightarrow \mathbb{R}$ is measurable if and only if $\{x \in E: f(x)>r\}$ is measurable for each rational number r. (Hint: for each $a \in \mathbb{R}$ there is a decreasing sequence of rational numbers r_{n} such that $a=\lim _{n \rightarrow \infty} r_{n}$.)
3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the monotone convergence theorem.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be measurable and $f \geq 0$, and define $\nu: \mathcal{M} \rightarrow \mathbb{R}$ by

$$
\nu(A)=\int_{A} f d m, \quad A \in \mathcal{M}
$$

b. Show that ν is a measure. (Hint: use the monotone convergence theorem.)
4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n \sin (x)}{1+n^{2} \sqrt{x}} d x
$$

5. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. the random variable X, given by $X(\omega)=2 \omega-1$,
b. the random variable X given by $X(\omega)=\max (\omega, 1-\omega)$.
6. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two measure spaces, and let $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ be a measurable function on the product space $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}, \mu_{1} \times \mu_{2}\right)$.
a. (Fubini's Theorem) Under which condition do we have

$$
\int_{\Omega_{1} \times \Omega_{2}} f d\left(\mu_{1} \times \mu_{2}\right)=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f d \mu_{1}\right) d \mu_{2} ?
$$

b. Evaluate

$$
\int_{E} y \sin x e^{-x y} d x d y
$$

where $E=(0, \infty) \times(0,1)$, and justify your steps.
7. Let (Ω, \mathcal{F}) be a measurable space and let μ and ν be finite measures on (Ω, \mathcal{F}).
a. What is meant by $\nu \ll \mu$ (ν is absolutely continuous with respect to μ)?
b. What does the Radon-Nikodym Theorem say about the relation between μ and ν if $\nu \ll \mu$?
c. Give the Radon-Nikodym derivative $\frac{d \nu}{d \mu}$ if $\nu \ll \mu$ and Ω is finite.
8. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$ and set

$$
X_{n}(\omega)=\max \left\{n-n^{2}\left|\omega-\frac{1}{n}\right|, 0\right\}, \quad n=1,2, \ldots
$$

a. Does X_{n} converge to 0 uniformly? Pointwise?
b. Does X_{n} converge to 0 almost surely? In probability?
c. Does X_{n} converge to 0 in L^{1}-norm?

Motivate your answers.

1				2		3		4		5		6		7			8		
a	b	c	d	a	b	a	b	a	b	a	b	a	b	a	b	c	a	b	c
2	2	2	1	1	3	1	2	2	2	2	2	1	2	1	1	2	2	1	2

Mark: $\frac{\text { Total }}{34} \times 9+1$ (rounded)

