UNIVERSITEIT TWENTE

Faculteit Elektrotechniek, Wiskunde en Informatica

Exam Measurability and Probability (1915703401) on Monday, January 19, 2015, 8.45 – 11.45 uur.

The solutions of the exercises should be clearly formulated and clearly written down. Moreover, you should in all cases include a convincing argument with your answer.

With this exam a calculator is **not** permitted. Also a formula sheet is **not** permitted.

- 1. Let $\Omega = \mathbb{R}$ and let A_1, \ldots, A_8 be 8 disjoint, nonempty subsets of Ω . Let \mathcal{F} be the smallest σ -algebra containing the sets A_1, \ldots, A_8 . Finally $\mu : \mathcal{F} \to \mathbb{R}^+$ is a measure.
 - a) How many elements does $\mathcal F$ have? Clarify your computation!
 - b) Let *B* be a subset of Ω . Show under what conditions on the set *B*, the indicator function 1_B is measurable with respect to the measure space $(\Omega, \mathcal{F}, \mu)$.

Assume $A_i = [i, i + 1)$ and $\mu(A_i) = i$. Finally, consider the function $f(x) = \lfloor x \rfloor$, i.e. f(x) is the largest integer smaller than or equal to x.

c) Check whether the integral:

$$\int_0^5 f \,\mathrm{d}\mu$$

is well-defined with respect to this measure space and, if so, compute the integral.

2. Consider the following expression:

$$\lim_{n \to \infty} \int_0^{2\pi} \frac{\sin(nx)}{(x+1)(x+2)} \,\mathrm{d}x$$

Is it possible to use the dominated convergence theorem to conclude convergence of this limit?

3. Investigate the convergence of:

$$\lim_{n \to \infty} \int_0^1 \frac{\sqrt[n]{x}}{x+1-\sqrt[n]{x}} \,\mathrm{d}x$$

and, if well-defined, compute the limit. If you use any theorems from the book then clearly formulate that theorem.

4. Consider the measure space ([0,3], $\mathcal{M}_{[0,3]}$, $m_{[0,3]}$). Define the function:

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1) \\ 0 & \text{if } x \in [1,2) \\ 1 & \text{if } x \in [2,3) \end{cases}$$

and consider two measures:

$$\mu(A) = \int_A f \,\mathrm{d}m, \qquad \nu(A) = \int_A g \,\mathrm{d}m$$

- a) Characterize under what conditions on the function *g* we have that $v \ll \mu$
- b) Determine the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$.
- 5. Consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\Omega = [0, 2]$, $\mathcal{F} = \mathcal{M}_{[0,2]}$ and $\mu = \frac{1}{2}m_{[0,2]}$. Let *X* and *Y* be random variables on the product space $(\Omega \times \Omega, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ defined by:

$$X(\omega_1, \omega_2) = \omega_1 \omega_2, \qquad Y(\omega_1, \omega_2) = \omega_1$$

- a) Find the (cumulative) distribution function F_X
- b) Compute $\mathbb{E}(X)$
- c) Compute P(X > Y)
- d) Compute $\mathbb{E}(X \mid Y)$
- 6. Consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\Omega = [0, \infty)$, $\mathcal{F} = \mathcal{M}_{[0,\infty)}$. Let μ be such that

$$\mu([a,b]) = \int_{a}^{b} \frac{1}{(x+1)^{2}} \mathrm{d}m$$

Define two sequences of random variables:

$$X_n(\omega) = \begin{cases} \frac{1}{n} & n \le \omega \le 2n \\ 0 & \text{otherwise} \end{cases} \quad Y_n(\omega) = \begin{cases} n & 0 \le \omega \le \frac{1}{n^2} \\ 0 & \text{otherwise} \end{cases}$$

Which of the following statements are true? (Justify your answers).

- a) $Y_n \rightarrow 0$ in probability.
- b) $Y_n \rightarrow 0$ almost surely.
- c) $X_n \rightarrow 0$ pointwise.
- d) $X_n \rightarrow 0$ in L_1 -norm.
- e) $Y_n \rightarrow 0$ in L_1 -norm.
- f) $X_n \rightarrow 0$ in L_2 -norm.
- g) $Y_n \rightarrow 0$ in L_2 -norm.

For the questions the following number of points can be awarded:

Exercise	1.	11 points	S Exercise	4.	8 points	8	1
----------	----	-----------	------------	----	----------	---	---

- Exercise 2. 5 points **5** Exercise 5. 12 points **4**
- Exercise 3. 7 points **5** Exercise 6. 11 points **1**

The final grade is determined by adding 6 points to the total number of points awarded and dividing by 6.