UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

Exam Measurability and Probability (1915703401) on Wednesday, April 12, 2017, 13:45 – 16:45 hours.

The solutions of the exercises should be clearly formulated and clearly written down. Moreover, you should in all cases include a convincing argument with your answer. With this exam a calculator is **not** permitted. Also a formula sheet is **not** permitted.

1. Consider the measurable space (Ω, \mathcal{B}, m) with $\Omega = [-\pi, \pi]$, \mathcal{B} is the collection of Borel sets and m is the Lebesgue measure. Consider the three functions: $f_1, f_2, f_3 : \Omega \to \mathbb{R}$ defined by:

$$f_1(x) = x, \quad f_2(x) = \sin x, \quad f_3(x) = \operatorname{sgn} x = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

Let \mathcal{F}_1 be the smallest σ -algebra such that f_1 as a mapping from (Ω, \mathcal{F}_1) to (Ω, \mathcal{B}) is measurable. We define \mathcal{F}_2 and \mathcal{F}_3 similarly as the smallest σ -algebras such that f_2 and f_3 respectively are measurable.

- a) Verify whether $\mathcal{F}_1 \subset \mathcal{F}_2$, $\mathcal{F}_1 = \mathcal{F}_2$ or $\mathcal{F}_1 \supset \mathcal{F}_2$.
- b) Verify whether $\mathcal{F}_1 \subset \mathcal{F}_3$, $\mathcal{F}_1 = \mathcal{F}_3$ or $\mathcal{F}_1 \supset \mathcal{F}_3$.
- c) Verify whether $\mathcal{F}_1 \subset \mathcal{B}$, $\mathcal{F}_1 = \mathcal{B}$ or $\mathcal{F}_1 \supset \mathcal{B}$.

4 Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Investigate the convergence of:

$$\lim_{n\to\infty}\int_0^{12}\frac{n\cos(\frac{x}{n})-x}{x+n}\,\mathrm{d}m$$

If you use any theorems from the book then clearly formulate that theorem.

3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Investigate the convergence of:

$$\lim_{n\to\infty}\int_0^\infty ne^{-nx^2}\,\mathrm{d}m$$

If you use any theorems from the book then clearly formulate that theorem.

4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and suppose $\{E_n\}$ is a partition of Ω , i.e. $\Omega = \bigcup_{n=1}^{\infty} E_n$ where $\{E_n\}$ is a collection of pairwise disjoint measurable sets. Let $\{F_n\}$ be another partition of Ω which is a refinement of the partition $\{E_n\}$. Assume $\mu(E_n) < \infty$ and $\mu(F_n) < \infty$ for all $n \ge 1$. Consider two potential measures ν and ρ defined by:

$$u(A) = \sum_{n=1}^{\infty} \alpha_n \mu(A \cap E_n), \qquad \rho(A) = \sum_{n=1}^{\infty} \beta_n \mu(A \cap F_n).$$

- a) Find conditions on the α_n to characterize when ν is a measure on (Ω, \mathcal{F}) .
- b) Assume ν and ρ are both measures. Find conditions on the α_n , β_n to characterize when $\nu \ll \rho$.
- c) Assume ν and ρ are both measures with $\nu \ll \rho$. Determine the Radon-Nikodym derivative of ν with respect to ρ .

see reverse side

Exam Measurability and Probability (1915703401) on Wednesday, April 12, 2017, 13:45 – 16:45 hours.

5. Consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\Omega = [-1, 1], \mathcal{F} = \mathcal{M}_{[-1,1]}$ and $\mu = \frac{1}{2}m_{[-1,1]}$. Let *X* and *Y* be random variables on the product space $(\Omega \times \Omega, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ defined by:

 $X(\omega_1, \omega_2) = \omega_1 \omega_2^2, \quad Y(\omega_1, \omega_2) = 2\omega_1^2$ (a) Find the (cumulative) distribution function F_X (b) Compute $\mathbb{E}(X)$ (c) Compute P(X > Y)(c) Compute $\mathbb{E}(X \mid Y)$

6. Consider the probability space (Ω, \mathcal{M}, m) with $\Omega = [0, 1]$, \mathcal{M} the Lebesgue measurable subsets of Ω and m the Lebesgue measure. Define a sequence of random variables:

 $X_n(\omega) = \sqrt{n} \min\{0, 2|n\omega - 1| - 1\}$

Which of the following statements are true? (Justify your answers).

a) $X_n \rightarrow 0$ in probability. b) $X_n \rightarrow 0$ almost surely. c) $X_n \rightarrow 0$ pointwise. c) $X_n \rightarrow 0$ in L_1 -norm. c) $X_n \rightarrow 0$ in L_2 -norm.

For the questions the following number of points can be awarded:

Exercise 1. 9 points Exercise 4. 9 points Exercise 2. 9 points Exercise 5. 9 points

Exercise 3. 9 points Exercise 6. 9 points

The final grade is determined by adding 6 points to the total number of points awarded and dividing by 6.