Exam Measure and Probability (191570401) Monday 22 January 2018, 8.45 - 11.45 a.m.

This exam consists of 6 problems

- 1. Let Ω be a set, \mathcal{F} a collection of subsets of Ω , and $\mu:\mathcal{F}\to[0,\infty)$. When do we call
 - a. \mathcal{F} a σ -field?
 - b. μ an outer measure?
 - c. μ a measure?

Suppose $\mathcal F$ is a σ -field and μ a finitely-additive set function, that is, $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever A and B are disjoint sets in $\mathcal F$. Also suppose μ has the following property: If $E_1 \supset E_2 \supset E_3 \supset \ldots$ are sets in $\mathcal F$ such that $\cap_i E_i = \emptyset$, then $\lim_{i \to \infty} \mu(E_i) = 0$.

- d. Prove that μ is a measure on (Ω, \mathcal{F}) .
- 2. Consider the measure space $((0,1),\mathcal{M}_{(0,1)},m_{(0,1)})$.
 - a. What is meant by saying that $f:(0,1)\to\mathbb{R}$ is measurable?
 - b. What is meant by saying that $f:(0,1)\to\mathbb{R}$ is integrable?

A measurable function $f:(0,1)\to\mathbb{R}$ is said to be *mean-square integrable* if $\int_{(0,1)}f^2dm<\infty.$

- c. Show that every mean-square integrable function is integrable.
- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the monotone convergence theorem.
 - b. Suppose $f:\mathbb{R} \to [0,\infty)$ is a measurable function. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} n \ln \left(1 + \frac{f}{n} \right) dm = \int_{\mathbb{R}} f dm.$$

(Hint: Recall that $(1+x/n)^n$ increases to e^x as $n\to\infty$ if $x\ge 0$.)

- c. State the dominated convergence theorem.
- d. Evaluate

$$\lim_{n \to \infty} \int_{\mathbb{R}} \frac{n \sin(x/n)}{x(x^2 + 1)} dx$$

(and justify the result).

- 4. Consider the (Lebesgue) measurable function $f: \mathbb{R}^2 \to \mathbb{R}$.
 - a. What does Fubini's theorem tell us about $\int_{\mathbb{R}^2} f dm_2$?
 - b. Show that if f is the joint density function of the absolutely continuous random variables X and Y, then X and Y are independent if and only if

$$f(x,y) = f_X(x)f_Y(y)$$
 a.e.

- 5. Let $\mu_i,\ i=1,2,3$ be finite measures on a measurable space $(\Omega,\mathcal{F}).$
 - a. What is meant by $\mu_1 \ll \mu_2$ (μ_1 is absolutely continuous with respect to μ_2)?
 - b. What does the $Radon\text{-}Nikodym\ Theorem$ say about the relation between μ_1 and μ_2 if $\mu_1 \ll \mu_2$?
 - c. Let $\mu_1 = \delta_0 + \delta_1$, $\mu_2 = m_{[0,1]}$ and $\mu_3 = \mu_1 + \mu_2$. For which $i \neq j$ do we have $\mu_i \ll \mu_j$? Find the $Radon\text{-}Nikodym\ derivative}$ in each such case.
- 6. Consider the probability space $([0,1],\mathcal{M}_{[0,1]},m_{[0,1]})$ and, for $n=1,2,\ldots$, set

$$X_n(\omega) = \begin{cases} n^{2/3} & \text{if } 0 \le \omega < \frac{1}{n} \\ n^{-1/3} & \text{if } \frac{1}{n} \le \omega \le 1. \end{cases}$$

- a. Determine the distribution function $F_n(x)$ of X_n and utilize it to show that X_n converges weakly to 0.
- b. Which of the following statements are true? (Justify your answers).
 - (i) $X_n \to 0$ in probability.
 - (ii) $X_n \to 0$ almost surely.
 - (iii) $X_n \to 0$ pointwise.
 - (iv) $X_n \to 0$ in L^1 -norm.
 - (v) $X_n \to 0$ in L^2 -norm.
 - (vi) $X_n \to 0$ uniformly.

Σ	6		5			ļ	4	3			2			1				
	b	a	С	b	a	b	a	d	С	b	а	С	b	a	d	С	b	a
45	3	3	3	2	2	3	2	3	2	3	2	3	2	2	4	2	2	2