Exam Measure and Probability (157040)
 Monday, 29 January 2007, 13.30-16.30 p.m.

This exam consists of 8 problems

1. a. Define what is meant by $m^{*}(A)$, the Lebesgue outer measure of a subset A of \mathbb{R}.
b. Define what is meant by saying that $A \subset \mathbb{R}$ is measurable.
c. Show that if $A \subset \mathbb{R}$ and $m^{*}(A)=0$, then A is measurable.
2. Let Ω be a set, \mathcal{F} a σ-field of subsets of Ω, and μ a $[0, \infty]$-valued function on \mathcal{F}. When do we call
a. μ a measure?
b. $(\Omega, \mathcal{F}, \mu)$ a probability space?
3. Suppose $E \subset \mathbb{R}$ is (Lebesgue-)measurable, and f and g are functions from E to \mathbb{R}.
a. Define what is meant by saying that f is measurable.
b. Show that the function $h(x)=\min \{f(x), g(x)\}$ is measurable if f and g are measurable.
4. Let (Ω, \mathcal{F}, P) be a probability space, and let X be a non-negative random variable with $0<\mathbb{E} X=\int_{\Omega} X d P<\infty$. For $A \in \mathcal{F}$ define

$$
P_{X}(A)=\frac{\int_{A} X d P}{\int_{\Omega} X d P}
$$

Show that P_{X} is a probability measure on (Ω, \mathcal{F}). (Hint: you might need the monotone convergence theorem at some point.)
5. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n \sin (x)}{\left(1+n^{2} x^{1 / 2}\right)} d x
$$

6. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. the random variable X given by $X(\omega)=1$ if ω is rational and $X(\omega)=0$ otherwise;
b. the random variable X given by $X(\omega)=\omega^{2}$.
7. Let m be Lebesgue measure and P a probability measure on $(\mathbb{R}, \mathcal{B})$ and define $F(x):=P((-\infty, x])$ and $G_{c}(x):=F(x+c)-F(x), x \in \mathbb{R}$.
a. Show that, for any fixed $c>0, \int_{\mathbb{R}} G_{c} d m=c$.
b. Show that if F is continuous, then $\int_{\mathbb{R}} F d P=1 / 2$.
(Hint: use Fubini's theorem.)
8. Consider a sequence of functions $f_{n}(x)=n^{2} e^{-n|x|}, x \in \mathbb{R}$, and let $f(x)=$ $0, x \in \mathbb{R}$. Does f_{n} converge to f
a. uniformly on \mathbb{R} ?
b. pointwise?
c. almost everywhere?
d. in L^{p}-norm?

1	2	3	4	5	6	7	8
3	2	2	2	2	2	3	2

Mark: $\frac{\text { Total }}{18} \times 9+1$ (rounded)

