Exam Measure and Probability (157040) Thursday, 12 April 2007, 9.00 - 12.00 a.m.

This exam consists of 7 problems

- 1. a. Define what is meant by $m^*(A)$, the Lebesgue outer measure of a subset A of \mathbb{R} .
 - b. Define what is meant by saying that $A \subset \mathbb{R}$ is measurable.
 - c. Show that if $A \subset \mathbb{R}$ and $m^*(A) = 0$, then A is measurable.
- 2. Suppose $E \subset \mathbb{R}$ is a (Lebesgue-)measurable set.
 - a. Define what is meant by saying that $f: E \to \mathbb{R}$ is measurable.
 - b. Show that $f: E \to \mathbb{R}$ is measurable if and only if $\{x \in E: f(x) > r\}$ is measurable for each rational number r. (Hint: for each $a \in \mathbb{R}$ there is a decreasing sequence of rational numbers r_n such that $a = \lim_{n \to \infty} r_n$.)
 - c. Show that $\{x \in E : f_1(x) > f_2(x)\}$ is measurable if $f_1 : E \to \mathbb{R}$ and $f_2 : E \to \mathbb{R}$ are measurable. (Do not use any other result than b. without proof.)
- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Let $f : \mathbb{R} \to \mathbb{R}$ and $f \geq 0$, and define $\nu : \mathcal{M} \to \mathbb{R}$ by

$$\nu(A) = \int_A f dm, \quad A \in \mathcal{M}.$$

- a. State the monotone convergence theorem.
- b. Show that ν is a measure. (Hint: use the monotone convergence theorem.)
- 4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the dominated convergence theorem.
 - b. Evaluate

$$\lim_{n\to\infty} \int_0^1 e^{-nx^2} dx.$$

- 5. Consider the probability space ([0, 1], $\mathcal{M}_{[0,1]}$, $m_{[0,1]}$). Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. the random variable X, given by $X(\omega) = 2\omega 1$,

- b. the random variable X given by $X(\omega) = \max(\omega, 1 \omega)$.
- 6. Let X and Y be two random variables defined on the probability space (Ω, \mathcal{F}, P) with joint density

$$f_{X,Y}(x,y) = \mathbf{1}_A(x,y), \quad (x,y) \in \mathbb{R}^2,$$

where A is the triangle with corners at (0,2), (1,0) and (1,2).

- a. Find P(X > Y).
- b. Find the conditional density $f_{X|Y}(x|Y=y)$ of X given Y=y.
- c. Determine E(X|Y).
- 7. Consider the probability space $((0,1), \mathcal{M}_{(0,1)}, m_{(0,1)})$ and, for $n=1,2,\ldots$, set

$$X_n(\omega) = \begin{cases} n & \text{if } 0 < \omega < \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} < \omega < 1. \end{cases}$$

Which of the following statements are true? (Justify your answers).

- a. $X_n \to 0$ in probability.
- b. $X_n \to 0$ almost surely.
- c. $X_n \to 0$ pointwise.
- d. $X_n \to 0$ in L^1 -norm.
- e. $X_n \to 0$ in L^2 -norm.

1	2	3	4	5	6	7
3	3	2	2	2	3	3

Mark: $\frac{\text{Total}}{18} \times 9 + 1$ (rounded)