Exam Measure and Probability (157040)
 Monday, 21 January 2008, 9.00-12.00 a.m.

$$
\text { This exam consists of } 7 \text { problems }
$$

1. Let Ω be a non-empty set.
a. Define what is meant by a σ-field of subsets of Ω.
b. Let \mathcal{F} be a σ-field of subsets of Ω and let $B \subseteq \Omega$. Show that $\mathcal{G}=\{A \in \mathcal{F}$: $A \subseteq B$ or $\left.B^{c} \subseteq A\right\}$ is a σ-field.
c. Let $f: \Omega \rightarrow \mathbb{R}$ be a function and let \mathcal{F} be a σ-field. What does it mean to say that f is \mathcal{F}-measurable.
d. Let \mathcal{F}, \mathcal{G} be as in b , and let $f: \Omega \rightarrow \mathbb{R}$ be an \mathcal{F}-measurable function. Under what conditions will f be \mathcal{G}-measurable?
2. Let Ω be a non-empty set, \mathcal{F} a σ-field of subsets of Ω, and μ a $[-\infty, \infty]$-valued function on \mathcal{F}. When do we call μ
a. an outer measure?
b. a measure?
c. a probability measure?
3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
a. State the dominated convergence theorem.
b. Investigate the convergence as $n \rightarrow \infty$ of

$$
\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right) \sqrt[n]{x}} d x
$$

4. Consider the probability space $\left([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]}\right)$. Find F_{X}, the distribution function, and $\mathbb{E}(X)$, the expectation of
a. the random variable X, given by $X(\omega)=3 \omega-2$,
b. the random variable X given by $X(\omega)=\min (\omega, 1-\omega)$.
5. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two measure spaces, and let $f: \Omega_{1} \times \Omega_{2} \rightarrow$ \mathbb{R} be a measurable function on the product space $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}, \mu_{1} \times \mu_{2}\right)$.
a. Under which condition do we have

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f d \mu_{1}\right) d \mu_{2} ?
$$

(This is Fubini's Theorem.)
b. Use Fubini's Theorem to show that for any distribution function F

$$
\int_{\mathbb{R}}(F(x+a)-F(x)) d x=a
$$

6. Let (Ω, \mathcal{F}) be a measurable space and let μ and ν be finite measures on (Ω, \mathcal{F}).
a. What is meant by $\nu \ll \mu(\nu$ is absolutely continuous with respect to $\mu)$?
b. What does the Radon-Nikodym Theorem say about the relation between μ and ν if $\nu \ll \mu$?
c. Give the Radon-Nikodym derivative $\frac{d \nu}{d \mu}$ if $\nu \ll \mu$ and Ω is finite.
7. Consider the probability space $\left([0,1), \mathcal{M}_{[0,1]}, m_{[0,1)}\right)$ and, for $n=1,2, \ldots$, set

$$
X_{n}(\omega)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq \omega<\frac{1}{2}-\frac{1}{2 n} \\
n & \text { if } & \frac{1}{2}-\frac{1}{2 n} \leq \omega<\frac{1}{2} \\
\frac{1}{n} & \text { if } & \frac{1}{2} \leq \omega<1
\end{array}\right.
$$

a. Find the distribution function $F_{n}(x)$ of X_{n}.
b. Which of the following statements are true? (Justify your answers).
(i) $X_{n} \rightarrow 0$ in probability.
(ii) $X_{n} \rightarrow 0$ weakly.
(iii) $X_{n} \rightarrow 0$ almost surely.
(iv) $X_{n} \rightarrow 0$ pointwise.
(v) $X_{n} \rightarrow 0$ in L^{1}-norm.
(vi) $X_{n} \rightarrow 0$ in L^{2}-norm.
(vii) $X_{n} \rightarrow 0$ uniformly.
points:

1	2	3	4	5	6	7
7	5	4	4	5	6	5

mark: $\frac{\text { total }}{36} \times 9+1$ (rounded)

