Exam Measure and Probability (157040) Monday, 21 January 2008, 9.00 - 12.00 a.m.

This exam consists of 7 problems

- 1. Let Ω be a non-empty set.
 - a. Define what is meant by a σ -field of subsets of Ω .
 - b. Let \mathcal{F} be a σ -field of subsets of Ω and let $B \subseteq \Omega$. Show that $\mathcal{G} = \{A \in \mathcal{F} : A \subseteq B \text{ or } B^c \subseteq A\}$ is a σ -field.
 - c. Let $f : \Omega \to \mathbb{R}$ be a function and let \mathcal{F} be a σ -field. What does it mean to say that f is \mathcal{F} -measurable.
 - d. Let \mathcal{F}, \mathcal{G} be as in b, and let $f : \Omega \to \mathbb{R}$ be an \mathcal{F} -measurable function. Under what conditions will f be \mathcal{G} -measurable?
- 2. Let Ω be a non-empty set, \mathcal{F} a σ -field of subsets of Ω , and μ a $[-\infty, \infty]$ -valued function on \mathcal{F} . When do we call μ
 - a. an outer measure?
 - b. a *measure*?
 - c. a probability measure?
- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the *dominated convergence theorem*.
 - b. Investigate the convergence as $n \to \infty$ of

$$\int_0^\infty \frac{1}{(1+x^2)\sqrt[n]{x}} dx.$$

- 4. Consider the probability space ([0, 1], $\mathcal{M}_{[0,1]}, m_{[0,1]}$). Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a. the random variable X, given by $X(\omega) = 3\omega 2$,
 - b. the random variable X given by $X(\omega) = \min(\omega, 1 \omega)$.
- 5. Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces, and let $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a measurable function on the product space $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, \mu_1 \times \mu_2)$.

a. Under which condition do we have

$$\int_{\Omega_1} \left(\int_{\Omega_2} f d\mu_2 \right) d\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f d\mu_1 \right) d\mu_2?$$

(This is *Fubini's Theorem*.)

b. Use Fubini's Theorem to show that for any distribution function F

$$\int_{\mathbb{R}} (F(x+a) - F(x))dx = a.$$

- 6. Let (Ω, \mathcal{F}) be a measurable space and let μ and ν be finite measures on (Ω, \mathcal{F}) .
 - a. What is meant by $\nu \ll \mu$ (ν is absolutely continuous with respect to μ)?
 - b. What does the *Radon-Nikodym Theorem* say about the relation between μ and ν if $\nu \ll \mu$?
 - c. Give the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ if $\nu \ll \mu$ and Ω is finite.
- 7. Consider the probability space $([0, 1), \mathcal{M}_{[0,1)}, m_{[0,1)})$ and, for $n = 1, 2, \ldots$, set

$$X_n(\omega) = \begin{cases} 0 & \text{if } 0 \le \omega < \frac{1}{2} - \frac{1}{2n} \\ n & \text{if } \frac{1}{2} - \frac{1}{2n} \le \omega < \frac{1}{2} \\ \frac{1}{n} & \text{if } \frac{1}{2} \le \omega < 1. \end{cases}$$

- a. Find the distribution function $F_n(x)$ of X_n .
- b. Which of the following statements are true? (Justify your answers).
 - (i) $X_n \to 0$ in probability.
 - (ii) $X_n \to 0$ weakly.
 - (iii) $X_n \to 0$ almost surely.
 - (iv) $X_n \to 0$ pointwise.
 - (v) $X_n \to 0$ in L^1 -norm.
 - (vi) $X_n \to 0$ in L^2 -norm.
 - (vii) $X_n \to 0$ uniformly.

points:	1	2	3	4	5	6	7
	7	5	4	4	5	6	5

mark: $\frac{\text{total}}{36} \times 9 + 1$ (rounded)